Источники ионизирующих излучений — общие сведения. Биологические изменения при действии лучей

💖 Нравится? Поделись с друзьями ссылкой

Основным свойством ионизирующего излучения, обусловливающим его биологическое (в том числе и поражающее) действие, является способность проникать в различные ткани, клетки, субклеточные структуры и вызывать ионизацию атомов и молекул в облучаемом веществе. При этом под влиянием поглощенной энергии ионизирующего излучения атомы или молекулы переходят в возбужденное состояние вплоть до высвобождения электрона (ионизации). Оставшаяся часть атома или молекулы приобретает положительный заряд и становится положительным ионом.

Ионизация большинства элементов, входящих в состав биосубстрата, происходит лишь в том случае, если поглощенная энергия составляет не менее 10-12 эВ (так называемый потенциал ионизации). Если же передаваемая атому или молекуле энергия кванта излучения меньше потенциала ионизации облучаемого вещества, происходит лишь их возбуждение. Таким образом, основными процессами, в которых расходуется энергия излучений, поглощенная в облучаемом биообъекте, являются ионизация (потеря атомом или молекулой электронов) или возбуждение (переход электронов на более высокий энергетический уровень). Одной из важнейших характеристик ионизирующего излучения, определяющих особенности его поражающего действия, является проникающая способность, т. е. глубина проникновения в биологический материал.

Проникающая способность ионизирующего излучения зависит от его природы, заряда составляющих его частиц и энергии, а также от состава и плотности облучаемого вещества. Различают электромагнитные и корпускулярные излучения. К электромагнитным относят рентгеновское и гамма-излучение, к корпускулярным - а-частицы (ядра атомов гелия), ß-частицы (электроны), нейтроны и протоны. Электромагнитные излучения характеризуются большой проникающей способностью, при этом чем больше энергия излучения, тем слабее ее поглощение и выше его проникающая способность; аи ß-излучения отличаются низкой проникающей способностью.

Например, проникающая способность в биологическом материале а-излучения составляет около 40 мкм, ß-излучения с энергией 2-5 МэВ - 1-2,5 см. Высокой проникающей способностью характеризуются нейтроны, особенно быстрые (с энергией более 0,1 МэВ), имеющие наибольшее практическое значение в радиобиологии. Проникающая способность ионизирующего излучения в значительной мере определяет характер лучевого поражения. Так, острая лучевая болезнь с характерными для нее синдромами возникает обычно под влиянием внешнего гамма и гамма-нейтронного излучения, тогда как воздействие на организм а-и ß-излучения приводит, как правило, к местным лучевым поражениям.

Биологический эффект ионизирующего излучения зависит не только от его проникающей способности, но и количества поглощенной энергии, а также от характера ее пространственного микрораспределения. Количество (доза) поглощенной энергии ионизирующего излучения в единицах СИ выражается в джоулях на килограмм и имеет специальное название - «грей» (Гр). В качестве внесистемной единицы дозы поглощенной энергии используется рад (1 Гр равен 100 рад). Энергию, переданную заряженной частицей на единицу длины ее пробега в веществе, называют линейной передачей энергии (ЛПЭ). Ее величина обратно пропорциональна кинетической энергии частицы и определяется плотностью распределения событий ионизации вдоль трека частицы.

При равной скорости движения частицы ЛПЭ пропорциональна квадрату заряда частицы, а при равной энергии плотность ионизации увеличивается по мере увеличения массы частицы. 30 В зависимости от значения ЛПЭ все ионизирующие излучения делятся на редкои плотноионизирующие, при этом к редкоионизирующим принято относить все виды излучений, имеющие ЛПЭ менее 10 кэВ/мкм, а к плотноионизирующим - те, для которых ЛПЭ превышает указанную величину.

Плотноионизирующие излучения при равной поглощенной дозе обладают большей биологической эффективностью вследствие усиления лучевого поражения клеток и тканей организма и снижения их способности к пострадиационному восстановлению. При одинаковых значениях поглощенной дозы различные виды ионизирующих излучений неодинаково действуют на один и тот же биообъект. Для сравнения биологического действия видов ионизирующего излучения с различной величиной ЛПЭ их принято различать по «относительной биологической эффективности» (ОБЭ).

Количественной оценкой ОБЭ служит ее коэффициент, представляющий собой отношение дозы данного и «стандартного» (рентгеновского) излучения, обладающих равным биологическим эффектом при одинаковой поглощенной дозе. Таким образом, принципиальным свойством ионизирующих излучений, определяющим их биологическое действие, является способность вызывать ионизацию атомов и молекул в облучаемом веществе, а к основным характеристикам, от которых зависит величина биологического эффекта ионизирующих излучений, относятся их проникающая способность, величина поглощенной энергии и особенности ее пространственного распределения в тканях организма (плотность ионизации).

«Отношение людей к той или иной опасности определяется тем, насколько хорошо она им знакома».

Настоящий материал - обобщённый ответ на многочисленные вопросы, возникающие пользователей приборов для обнаружения и измерения радиации в бытовых условиях.
Минимальное использование специфической терминологии ядерной физики при изложении материала поможет вам свободно ориентироваться этой в экологической проблеме, не поддаваясь радиофобии, но и без излишнего благодушия.

Опасность РАДИАЦИИ реальная и мнимая

«Один из первых открытых природных радиоактивных элементов был назван «радием»
- в переводе с латинского-испускающий лучи, излучающий».

Каждого человека в окружающей среде подстерегают различные явления, оказывающие на него влияние. К ним можно отнести жару, холод, магнитные и обычные бури, проливные дожди, обильные снегопады, сильные ветры, звуки, взрывы и др.

Благодаря наличию органов чувств, отведенных ему природой, он может оперативно реагировать на эти явления с помощью, например, навеса от солнца, одежды, жилья, лекарств, экранов, убежищ и т.д.

Однако, в природе существует явление, на которое человек из-за отсутствия необходимых органов чувств не может мгновенно реагировать - это радиоактивность. Радиоактивность - не новое явление; радиоактивность и сопутствующие ей излучения (т.н. ионизирующие) существовали во Вселенной всегда. Радиоактивные материалы входят в состав Земли и даже человек слегка радиоактивен, т.к. в любой живой ткани присутствуют в малейших количествах радиоактивные вещества.

Самое неприятное свойство радиоактивного (ионизирующего) излучения - его воздействие на ткани живого организма, поэтому необходимы соответствующие измерительные приборы, которые предоставляли бы оперативную информацию для принятия полезных решений до того, когда пройдет продолжительное время и проявятся нежелательные или даже губительные последствия.что его воздействие человек начнет ощущать не сразу, а лишь по прошествии некоторого времени. Поэтому информацию о наличии излучения и его мощности необходимо получить как можно раньше.
Однако, хватит загадок. Поговорим о том, что же такое радиация и ионизирующее (т. е. радиоактивное) излучение.

Ионизирующее излучение

Любая среда состоит из мельчайших нейтральных частиц-атомов , которые состоят из положительно заряженных ядер и окружающих их отрицательно заряженных электронов. Каждый атом похож на солнечную систему в миниатюре: вокруг крошечного ядра движутся по орбитам «планеты» - электроны .
Ядро атома состоит из нескольких элементарных частиц-протонов и нейтронов, удерживаемых ядерными силами.

Протоны частицы имеющие положительный заряд, равный по абсолютной величине заряду электронов.

Нейтроны нейтральные, не обладающие зарядом, частицы. Число электронов в атоме в точности равно числу протонов в ядре, поэтому каждый атом в целом нейтрален. Масса протона почти в 2000 раз больше массы электрона.

Число присутствующих в ядре нейтральных частиц (нейтронов) может быть разным при одинаковом числе протонов. Такие атомы, имеющие ядра с одинаковым числом протонов, но различающиеся по числу нейтронов, относятся к разновидностям одного и того же химического элемента, называемым «изотопами» данного элемента. Чтобы отличить их друг от друга, к символу элемента приписывают число, равное сумме всех частиц в ядре данного изотопа. Так уран-238 содержит 92 протона и 146 нейтронов; в уране 235 тоже 92 протона, но 143 нейтрона. Все изотопы химического элемента образуют группу «нуклидов». Некоторые нуклиды стабильны, т.е. не претерпевают никаких превращений, другие же, испускающие частицы нестабильны и превращаются в другие нуклиды. В качестве примера возьмем атом урана - 238. Время от времени из него вырывается компактная группа из четырех частиц: двух протонов и двух нейтронов -«альфа-частица (альфа)». Уран-238 превращается, таким образом, в элемент, в ядре которого содержится 90 протонов и 144 нейтрона - торий-234. Но торий-234 тоже нестабилен: один из его нейтронов превращается в протон, и торий-234 превращается в элемент, в ядре которого содержится 91 протон и 143 нейтрона. Это превращение сказывается и на движущихся по своим орбитам электронах (бета): один из них становится как бы лишним, не имеющим пары (протона), поэтому он покидает атом. Цепочка многочисленных превращений, сопровождающаяся альфа- или бета- излучениями, завершается стабильным нуклидом свинца. Разумеется, существует много подобных цепочек самопроизвольных превращений (распадов) разных нуклидов. Период полураспада, есть отрезок времени, за который исходное число радиоактивных ядер в среднем уменьшается в два раза.
При каждом акте распада высвобождается энергия, которая и передается в виде излучения. Часто нестабильный нуклид оказывается в возбужденном состоянии и при этом испускание частицы не приводит к полному снятию возбуждения; тогда он выбрасывает порцию энергии в виде гамма-излучения (гамма-кванта). Как и в случае рентгеновских лучей (отличающихся от гамма-излучения только частотой) при этом не происходит испускания каких-либо частиц. Весь процесс самопроизвольного распада нестабильного нуклида называется радиоактивным распадом, а сам нуклид радионуклидом.

Различные виды излучений сопровождаются высвобождением разного количества энергии и обладают различной проникающей способностью; поэтому они оказывают неодинаковое воздействие на ткани живого организма. Альфа-излучение, задерживается, например, листом бумаги и практически не способно проникнуть через наружный слой кожи. Поэтому оно не представляет опасности до тех пор, пока радиоактивные вещества, испускающие альфа - частицы, не попадут внутрь организма через открытую рану, с пищей, водой или с вдыхаемым воздухом или паром, например, в бане; тогда они становятся чрезвычайно опасными. Бета - частица обладает большей проникающей способностью: она проходит в ткани организма на глубину один-два сантиметра и более, в зависимости от величины энергии. Проникающая способность гамма-излучения, которое распространяется со скоростью света, очень велика: его может задержать лишь толстая свинцовая или бетонная плита. Ионизирующее излучение характеризуется рядом измеряемых физических величин. К ним следует отнести энергетические величины. На первый взгляд может показаться, что их бывает достаточно для регистрации и оценки воздействия ионизирующего излучения на живые организмы и человека. Однако, эти энергетические величины не отражают физиологического воздействия ионизирующего излучения на человеческий организм и другие живые ткани, субъективны, и для разных людей различны. Поэтому используются усредненные величины.

Источники радиации бывают естественными, присутствующими в природе, и не зависящими от человека.

Установлено, что из всех естественных источников радиации наибольшую опасность представляет радон -тяжелый газ без вкуса, запаха и при этом невидимый; со своими дочерними продуктами.

Радон высвобождается из земной коры повсеместно, но его концентрация в наружном воздухе существенно различается для различных точек земного шара. Как ни парадоксально это может показаться на первый взгляд, но основное излучение от радона человек получает, находясь в закрытом, непроветриваемом помещении. Радон концентрируется в воздухе внутри помещений лишь тогда, когда они в достаточной мере изолированы от внешней среды. Просачиваясь через фундамент и пол из грунта или, реже, высвобождаясь из стройматериалов, радон накапливается в помещении. Герметизация помещений с целью утепления только усугубляет дело, поскольку при этом еще более затрудняется выход радиоактивного газа из помещения. Проблема радона особенно важна для малоэтажных домов с тщательной герметизацией помещений (с целью сохранения тепла) и использованием глинозема в качестве добавки к строительным материалам (т.н. «шведская проблема»). Самые распространенные стройматериалы - дерево, кирпич и бетон - выделяют относительно немного радона. Гораздо большей удельной радиоактивностью обладают гранит, пемза, изделия из глиноземного сырья, фосфогипса.

Еще один, как правило менее важный, источник поступления радона в помещения представляет собой вода и природный газ, используемый для приготовления пищи и обогрева жилья.

Концентрация радона в обычно используемой воде чрезвычайно мала, но вода из глубоких колодцев или артезианских скважин содержит очень много радона. Однако основная опасность исходит вовсе не от питья воды, даже при высоком содержании в ней радона. Обычно люди потребляют большую часть воды в составе пищи и в виде горячих напитков, а при кипячении воды или приготовлении горячих блюд радон практически полностью улетучивается. Гораздо большую опасность представляет попадание паров воды с высоким содержанием радона в легкие вместе с вдыхаемым воздухом, что чаще всего происходит в ванной комнате или парилке (парной).

В природный газ радон проникает под землей. В результате предварительной переработки и в процессе хранения газа перед поступлением его к потребителю большая часть радона улетучивается, но концентрация радона в помещении может заметно возрасти, если кухонные плиты и другие нагревательные газовые приборы не снабжены вытяжкой. При наличии же приточно - вытяжной вентиляции, которая сообщается с наружным воздухом, концентрации радона в этих случаях не происходит. Это относится и к дому в целом -ориентируясь на показания детекторов радона можно установить режим вентиляции помещений, полностью исключающий угрозу здоровью. Однако, учитывая, что выделение радона из грунта имеет сезонный характер, нужно контролировать эффективность вентиляции три-четыре раза в год, не допуская превышения норм концентрации радона.

Другие источники радиации, к сожалению обладающие потенциальной опасностью, созданы самим человеком. Источники искусственной радиации - это созданные с помощью ядерных реакторов и ускорителей искусственные радионуклиды, пучки нейтронов и заряженных частиц. Они получили название техногенных источников ионизирующего излучения. Оказалось, что наряду с опасным для человека характером, радиацию можно поставить на службу человеку. Вот далеко не полный перечень областей применения радиации: медицина, промышленность, сельское хозяйство, химия, наука и т.д. Успокаивающим фактором является контролируемый характер всех мероприятий, связанных с получением и применением искусственной радиации.

Особняком по своему воздействию на человека стоят испытания ядерного оружия в атмосфере, аварии на АЭС и ядерных реакторах и результаты их работы, проявляющиеся в радиоактивных осадках и радиоактивных отходах. Однако только чрезвычайные ситуации, типа Чернобыльской аварии, могут оказать неконтролируемое воздействие на человека.
Остальные работы легко контролируются на профессиональном уровне.

При выпадении радиоактивных осадков в некоторых местностях Земли радиация может попадать внутрь организма человека непосредственно через с/х продукцию и питание. Обезопасить себя и своих близких от этой опасности очень просто. При покупке молока, овощей, фруктов, зелени, да и любых других продуктов совсем не лишним будет включить дозиметр и поднести его к покупаемой продукции. Радиации не видно - но прибор мгновенно определит наличие радиоактивного загрязнения. Такова наша жизнь в третьем тысячелетии - дозиметр становится атрибутом повседневной жизни, как носовой платок, зубная щетка, мыло.

ВОЗДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ НА ТКАНИ ОРГАНИЗМА

Повреждений, вызванных в живом организме ионизирующим излучением, будет тем больше, чем больше энергии оно передаст тканям; количество этой энергии называется дозой, по аналогии с любым веществом поступающим в организм и полностью им усвоенным. Дозу излучения организм может получить независимо от того, находится ли радионуклид вне организма или внутри него.

Количество энергии излучения, поглощенное облучаемыми тканями организма, в пересчете на единицу массы называется поглощенной дозой и измеряется в Греях. Но эта величина не учитывает того, что при одинаковой поглощенной дозе альфа-излучение гораздо опаснее (в двадцать раз) бета или гамма-излучений. Пересчитанную таким образом дозу называют эквивалентной дозой; ее измеряют в единицах называемых Зивертами.

Следует учитывать также, что одни части тела более чувствительны, чем другие: например, при одинаковой эквивалентной дозе облучения, возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения человека следует учитывать с различными коэффициентами. Умножив эквивалентные дозы на соответствующие коэффициенты и просуммировав по всем органам и тканям, получим эффективную эквивалентную дозу, отражающую суммарный эффект облучения для организма; она также измеряется в Зивертах.

Заряженные частицы.

Проникающие в ткани организма альфа- и бета-частицы теряют энергию вследствие электрических взаимодействий с электронами тех атомов, близ которых они проходят. (Гамма-излучение и рентгеновские лучи передают свою энергию веществу несколькими способами, которые в конечном счете также приводят к электрическим взаимодействиям).

Электрические взаимодействия.

За время порядка десяти триллионных секунды после того, как проникающее излучение достигнет соответствующего атома в ткани организма, от этого атома отрывается электрон. Последний заряжен отрицательно, поэтому остальная часть исходно нейтрального атома становится положительно заряженной. Этот процесс называется ионизацией. Оторвавшийся электрон может далее ионизировать другие атомы.

Физико-химические изменения.

И свободный электрон, и ионизированный атом обычно не могут долго пребывать в таком состоянии и в течение следующих десяти миллиардных долей секунды участвуют в сложной цепи реакций, в результате которых образуются новые молекулы, включая и такие чрезвычайно реакционно способные, как "свободные радикалы".

Химические изменения.

В течение следующих миллионных долей секунды образовавшиеся свободные радикалы реагируют как друг с другом, так и с другими молекулами и через цепочку реакций, еще не изученных до конца, могут вызвать химическую модификацию важных в биологическом отношении молекул, необходимых для нормального функционирования клетки.

Биологические эффекты.

Биохимические изменения могут произойти как через несколько секунд, так и через десятилетия после облучения и явиться причиной немедленной гибели клеток или изменений в них.

ЕДИНИЦЫ ИЗМЕРЕНИЯ РАДИОАКТИВНОСТИ

Беккерель (Бк, Вq);
Кюри (Ки, Си)

1 Бк = 1 распад в сек.
1 Ки = 3,7 х 10 10 Бк

Единицы активности радионуклида.
Представляют собой число распадов в единицу времени.

Грей (Гр, Gу);
Рад (рад, rad)

1 Гр = 1 Дж/кг
1 рад = 0.01 Гр

Единицы поглощённой дозы.
Представляют собой количество энергии ионизирующего излучения, поглощенное единицей массы какого-либо физического тела, например тканями организма.

Зиверт (Зв, Sv)
Бэр (бер, rem) - "биологический эквивалент рентгена"

1 Зв = 1 Гр = 1 Дж/кг (для бета и гамма)
1 мкЗв = 1/1000000 Зв
1 бер = 0.01 Зв = 10 мЗв Единицы эквивалентной дозы.
Единицы эквивалентной дозы.
Представляют собой единицу поглощенной дозы, умноженную на коэффициент, учитывающий неодинаковую опасность разных видов ионизирующего излучения.

Грей в час (Гр/ч);

Зиверт в час (Зв/ч);

Рентген в час (Р/ч)

1 Гр/ч = 1 Зв/ч = 100 Р/ч (для бета и гамма)

1 мк Зв/ч = 1 мкГр/ч = 100 мкР/ч

1 мкР/ч = 1/1000000 Р/ч

Единицы мощности дозы.
Представляют собой дозу полученную организмом за единицу времени.

Для информации, а не для запугивания, особенно людей, решивших посвятить себя работе с ионизирующим излучением, следует знать предельно допустимые дозы. Единицы измерения радиоактивности приведены в таблице 1. По заключению Международной комиссии по радиационной защите на 1990 г. вредные эффекты могут наступать при эквивалентных дозах не менее 1,5 Зв (150 бэр) полученных в течение года, а в случаях кратковременного облучения - при дозах выше 0,5 Зв (50 бэр). Когда облучение превышает некоторый порог, возникает лучевая болезнь. Различают хроническую и острую (при однократном массивном воздействии) формы этой болезни. Острую лучевую болезнь по тяжести подразделяют на четыре степени, начиная от дозы 1-2 Зв (100-200 бэр, 1-я степень) до дозы более 6 Зв (600 бэр, 4-я степень). Четвертая степень может закончиться летальным исходом.

Дозы, получаемые в обычных условиях, ничтожны по сравнению с указанными. Мощность эквивалентной дозы, создаваемой естественным излучением, колеблется от 0,05 до 0,2 мкЗв/ч, т.е. от 0,44 до 1,75 мЗв/год (44-175 мбэр/год).
При медицинских диагностических процедурах - рентгеновских снимках и т.п. - человек получает еще примерно 1,4 мЗв/год.

Поскольку в кирпиче и бетоне в небольших дозах присутствуют радиоактивные элементы, доза возрастает еще на 1,5 мЗв/год. Наконец, из-за выбросов современных тепловых электростанций, работающих на угле, и при полетах на самолете человек получает до 4 мЗв/год. Итого существующий фон может достигать 10 мЗв/год, но в среднем не превышает 5 мЗв/год (0,5 бэр/год).

Такие дозы совершенно безвредны для человека. Предел дозы в добавление к существующему фону для ограниченной части населения в зонах повышенной радиации установлен 5 мЗв/год (0,5 бэр/год), т.е. с 300-кратным запасом. Для персонала, работающего с источниками ионизирующих излучений, установлена предельно допустимая доза 50 мЗв/ год (5 бэр/год), т.е. 28 мкЗв/ч при 36-часовой рабочей неделе.

Согласно гигиеническим нормативам НРБ-96 (1996 г.) допустимые уровни мощности дозы при внешнем облучении всего тела от техногенных источников для помещения постоянного пребывания лиц из персонала - 10 мкГр/ч, для жилых помещений и территории, где постоянно находятся лица из населения - 0,1 мкГр/ч (0,1 мкЗв/ч, 10 мкР/ч).

ЧЕМ ИЗМЕРЯЮТ РАДИАЦИЮ

Несколько слов о регистрации и дозиметрии ионизирующего излучения. Существуют различные методы регистрации и дозиметрии: ионизационный (связанный с прохождением ионизирующего излучения в газах), полупроводниковый (в котором газ заменен твердым телом), сцинтиляционный, люминесцентный, фотографический. Эти методы положены в основу работы дозиметров радиации. Среди газонаполненных датчиков ионизирующего излучения можно отметить ионизационные камеры, камеры деления, пропорциональные счетчики и счетчики Гейгера-Мюллера . Последние относительно просты, наиболее дешевы, не критичны к условиям работы, что и обусловило их широкое применение в профессиональной дозиметрической аппаратуре, предназначенной для обнаружения и оценки бета- и гамма-излучения. Когда датчиком служит счетчик Гейгера-Мюллера, любая вызывающая ионизацию частица, попадающая в чувствительный объем счетчика, становится причиной самостоятельного разряда. Именно попадающая в чувствительный объем! Поэтому не регистрируются альфа -частицы, т.к. они туда не могут проникнуть. Даже при регистрации бета - частиц необходимо приблизить детектор к объекту, чтобы убедиться в отсутствии излучения, т.к. в воздухе энергия этих частиц может быть ослаблена, они могут не преодолеть корпус прибора, не попадут в чувствительный элемент и не будут обнаружены.

Доктор физико-математических наук, Профессор МИФИ Н.М. Гаврилов
статья написана для компании "Кварта-Рад"

Энциклопедичный YouTube

    1 / 5

    ✪ Подробнее о радиации

    ✪ Проникающая способность. Виды радиоактивного излучения

    ✪ Состав радиоактивного излучения

    ✪ Влияние радиоактивных излучений на живые организмы

    ✪ Правила поведения и действия населения при радиационных авариях и радиоактивном загрязнении местност

    Субтитры

    Здравствуйте. В этом выпуске канала TranslatorsCafe.com мы поговорим об ионизирующем излучении или радиации. Мы рассмотрим источники излучения, способы его измерения, влияние радиации на живые организмы. Более подробно мы поговорим о таких параметрах радиации, как мощность поглощенной дозы, а также об эквивалентной и эффективной дозах ионизирующего излучения. У радиации множество применений - от производства электроэнергии до лечения больных раком. В этом видеосюжете мы обсудим, как радиация влияет на ткани и клетки людей, животных и биоматериала, уделяя особое внимание тому, как быстро и насколько сильно происходит поражение облученных клеток и тканей. Излучение - природное явление, которое проявляется в том, что электромагнитные волны или элементарные частицы с высокой кинетической энергией движутся внутри среды. В этом случае среда может быть либо материей, либо вакуумом. Излучение - вокруг нас, и наша жизнь без него немыслима, так как выживание человека и других животных без излучения невозможно. Без излучения на Земле не будет таких необходимых для жизни природных явлений как свет и тепло. Не было бы ни мобильных телефонов, ни Интернета. В этом видеосюжете мы обсудим особый тип излучения, ионизирующее излучение или радиацию, которая окружает нас везде. Ионизирующее излучение обладает энергией, достаточной для отрыва электронов от атомов и молекул, то есть, для ионизации облучаемого вещества. Ионизирующее излучение в среде может возникнуть благодаря либо естественным, либо искусственным процессам. Естественные источники излучения включают солнечное и космическое излучения, некоторые минералы, например, гранит, а также излучение некоторых радиоактивных материалов, таких как уран и даже обычные бананы, содержащие радиоактивный изотоп калия. Радиоактивное сырье добывают в глубине земных недр и используют в медицине и промышленности. Иногда радиоактивные материалы попадают в окружающую среду в результате аварий на производстве и в отраслях, где используют радиоактивное сырье. Чаще всего это происходит из-за несоблюдения правил безопасности по хранению радиоактивных материалов и работе с ними или из-за отсутствия таких правил. Стоит заметить, что до недавнего времени радиоактивные материалы не считались опасными для здоровья. Даже наоборот, их использовали как целебные препараты, а также они ценились за их красивое свечение. Урановое стекло - пример радиоактивного материала, используемого в декоративных целях. Это стекло светится флуоресцентным зеленым светом благодаря добавлению в его состав оксида урана. Процент содержания урана в этом стекле относительно мал и количество выделяемой им радиации невелико, поэтому урановое стекло считают относительно безопасным для здоровья. Из него даже изготавливали стаканы, тарелки и другую посуду. Урановое стекло ценится за его необычное свечение. Солнце излучает ультрафиолет, поэтому урановое стекло светится и в солнечном свете, хотя это свечение намного более выражено под лампами ультрафиолетового света. При излучении поглощаются фотоны с более высокой энергией (ультрафиолет) и излучаются фотоны с более низкой энергией (зеленый цвет). Как вы убедились, эти бусы можно использовать для проверки дозиметров. Пакетик с бусами можно купить на eBay.com за пару долларов. Вначале рассмотрим некоторые определения. Существует множество способов измерять радиацию, в зависимости от того, что именно мы хотим узнать. Например, можно измерить общее количество радиации в данном месте; можно найти количество радиации, которое нарушает работу биологических тканей и клеток; или количество радиации, поглощенной телом или организмом, и так далее. Здесь мы рассмотрим два способа измерения радиации. Общее количество радиации в среде, измеряемое в единицу времени, называют суммарной мощностью дозы ионизирующего излучения. Количество радиации, поглощенное организмом за единицу времени, называют мощностью поглощенной дозы. Мощность поглощенной дозы находят, используя информацию о суммарной мощности дозы и о параметрах предмета, организма, или части тела, которая подвергается излучению. Эти параметры включают массу, плотность и объем. Значения поглощенной и экспозиционной дозы похожи для материалов и тканей, которые хорошо поглощают радиацию. Однако не все материалы - такие, поэтому часто поглощенная и экспозиционная дозы радиации отличаются, так как способность предмета или тела поглощать радиацию зависит от материала, из которого они состоят. Так, например, лист свинца поглощает гамма-излучение значительно лучше, чем лист алюминия той же толщины. Нам известно, что большая доза радиации, называемая дозой острого облучения, вызывает угрозу для здоровья, и чем выше эта доза - тем выше риск для здоровья. Нам также известно, что радиация влияет на разные клетки в организме по-разному. Наиболее сильно страдают от радиации клетки, которые подвергаются частому делению, а также неспециализированные клетки. Так, например, клетки в зародыше, кровяные клетки, и клетки репродуктивной системы больше всего подвержены отрицательному влиянию радиации. В то же время, кожа, кости, и мышечные ткани менее подвержены воздействию радиации. Но меньше всего радиация действует на нервные клетки. Поэтому в некоторых случаях общее разрушительное воздействие радиации на клетки, менее подверженные влиянию радиации, меньше, даже если на них действует большее количество радиации, чем на клетки, более подверженные влиянию радиации. Согласно теории радиационного гормезиса малые дозы радиации, наоборот, стимулируют защитные механизмы в организме, и в результате организм становится крепче, и менее подвержен заболеваниям. Необходимо заметить, что эти исследования находятся на начальной стадии, и пока неизвестно, удастся ли получить такие результаты за пределами лаборатории. Сейчас эти эксперименты проводят на животных и неизвестно, происходят ли эти процессы в организме человека. Из этических соображений трудно получить разрешение на такие исследования с участием людей. Поглощённая доза - величина отношения энергии ионизирующего излучения, поглощённой в данном объёме вещества, к массе вещества в этом объёме. Поглощенная доза является основной дозиметрической величиной и измеряется в джоулях на килограмм. Эта единица называется грэй. Ранее использовалась внесистемная единица рад. Поглощенная доза зависит не только от самой радиации, но и от материала, который ее поглощает: поглощенная доза мягкого рентгеновского излучения в костной ткани может быть вчетверо больше поглощенной дозы в воздухе. В то же время, в вакууме поглощенная доза равна нулю. Эквивалентная доза, характеризующая биологический эффект облучения человеческого организма ионизирующим излучением, измеряется в зивертах. Чтобы понять разницу между дозой и мощностью дозы, можно провести аналогию с чайником, в который наливают воду из-под крана. Объем воды в чайнике - это доза, а скорость наполнения, зависящая от толщины струйки воды, - это мощность дозы, то есть приращение дозы излучения в единицу времени. Мощность эквивалентной дозы измеряется в зивертах на единицу времени, например, в микрозивертах в час или миллизивертах в год. Радиация в основном не заметна невооруженным глазом, поэтому, чтобы определить наличие радиации, пользуются специальными измерительными приборами. Одно из широко используемых устройств - дозиметр на основе счетчика Гейгера-Мюллера. Счетчик состоит из трубки, в которой подсчитывается число радиоактивных частиц, и дисплея, который отображает количество этих частиц в разных единицах, чаще всего - как количество радиации за определенный срок времени, например за час. Приборы со счетчиками Гейгера часто издают короткие звуковые сигналы, например, щелчки, каждый из которых означает, что подсчитана новая излученная частица или несколько частиц. Этот звук обычно можно выключить. Некоторые дозиметры позволяет выбрать частоту щелчков. Например, можно настроить дозиметр, чтобы он издавал звук только после каждой двадцатой посчитанной частицы или реже. Кроме счетчиков Гейгера, в дозиметрах используют и другие датчики, например сцинтилляционные счетчики, которые позволяют лучше определить, какой вид радиации на данный момент преобладает в окружающей среде. Сцинтилляционные счетчики хорошо определяют как альфа, так и бета и гамма излучение. Эти счетчики преобразуют выделяемую при излучении энергию в свет, который затем преобразуется в фотоумножителе в электрический сигнал, который и измеряется. Во время измерений эти счетчики работают с большей поверхностью, чем счетчики Гейгера, поэтому измерения проходят более эффективно. У ионизирующего излучения очень высокая энергия, и поэтому оно ионизирует атомы и молекулы биологического материала. В результате от них отделяются электроны, что приводит к изменению их структуры. Эти изменения вызваны тем, что ионизация ослабляет или разрушает химические связи между частицами. Это повреждает молекулы внутри клеток и тканей и нарушает их работу. В некоторых случаях ионизация способствует образованию новых связей. Нарушение работы клеток зависит от того, насколько радиация повредила их структуру. В некоторых случаях нарушения не влияют на работу клеток. Иногда работа клеток нарушена, но повреждения невелики и организм постепенно восстанавливает клетки в рабочее состояние. Подобные нарушения нередко встречаются и в процессе нормальной работы клеток, при этом клетки сами возвращаются в норму. Поэтому если уровень радиации низок и нарушения невелики, то вполне возможно восстановление клеток до их обычного состояния. Если же уровень радиации высок, то в клетках происходят необратимые изменения. При необратимых изменениях клетки либо работают не так, как должны, либо перестают работать вовсе и отмирают. Повреждение радиацией жизненно важных и незаменимых клеток и молекул, например молекул ДНК и РНК, белков или ферментов вызывает лучевую болезнь. Повреждение клеток может также вызвать мутации, в результате которых у детей пациентов, чьи клетки поражены, могут развиться генетические заболевания. Мутации могут также вызвать чрезмерно быстрое деление клеток в организме пациентов - что, в свою очередь, увеличивает вероятность заболевания раком. Сегодня наши знания о влиянии радиации на организм и о том, в каких условиях это влияние усугубляется, ограничены, так как в распоряжении исследователей имеется совсем немного материала. Большая часть наших знаний основана на исследованиях историй болезни жертв атомных бомбардировок Хиросимы и Нагасаки, а также жертв взрыва на Чернобыльской АС. Стоит также отметить, что некоторые исследования влияния радиации на организм, которые проводили в 50-х - 70-х гг. прошлого века, были неэтичны и даже бесчеловечны. В частности, это исследования, проводимые военными в США и в Советском Союзе. Большая часть этих экспериментов была проведена на полигонах и в специально отведенных зонах для испытания ядерного оружия, например на полигоне в Неваде, США, на советском ядерном полигоне на Новой Земле, и на Семипалатинском испытательном полигоне на нынешней территории Казахстана. В некоторых случаях эксперименты проводили во время военных учений, как например, во время Тоцких войсковых учений (СССР, на нынешней территории России) и во время военных учений Desert Rock в штате Невада, США. Во время этих учений исследователи, если можно их так назвать, изучали воздействие радиации на организм человека после атомных взрывов. С 1946 по 1960-е эксперименты по влиянию радиации на организм проводили также в некоторых американских больницах без ведома и согласия больных. Спасибо за внимание! Если вам понравилась это видео, пожалуйста, не забудьте подписаться на наш канал!

Природа ионизирующего излучения

Наиболее значимы следующие типы ионизирующего излучения:

  • Коротковолновое электромагнитное излучение (поток фотонов высоких энергий):
  • Потоки частиц:
    • бета-частиц (электронов и позитронов);
    • протонов , мюонов и других элементарных частиц ;
    • Ионов (осколков деления, возникающих при делении ядер), в том числе альфа-частиц .

Источники ионизирующего излучения

  • Спонтанный радиоактивный распад радионуклидов .
  • Термоядерные реакции , например на Солнце .
  • Индуцированные ядерные реакции в результате попадания в ядро высокоэнергетичных элементарных частиц или слияния ядер.

Искусственные источники ионизирующего излучения:

  • Искусственные радионуклиды .
  • Ускорители элементарных частиц (генерируют потоки заряженных частиц, а также тормозное фотонное излучение).
    • Рентгеновский аппарат как разновидность ускорителей, генерирует тормозное рентгеновское излучение .

Наведённая радиоактивность

Многие стабильные атомы в результате облучения и соответствующей индуцированной ядерной реакции превращаются в нестабильные изотопы. В результате такого облучения стабильное вещество становится радиоактивным, причем тип вторичного ионизирующего излучения будет отличаться от первоначального облучения. Наиболее ярко такой эффект проявляется после нейтронного облучения.

Цепочка ядерных превращений

В процессе ядерного распада или синтеза возникают новые нуклиды, которые также могут быть нестабильны. В результате возникает цепочка ядерных превращений. Каждое превращение имеет свою вероятность и свой набор ионизирующих излучений. В результате интенсивность и характер излучений радиоактивного источника может значительно меняться со временем.

Измерение ионизирующих излучений

Методы измерения

Исторически первыми датчиками ионизирующего излучения были химические светочувствительные материалы , используемые в фотографии . Ионизирующие излучения засвечивали фотопластинку , помещенную в светонепроницаемый конверт. Однако от них быстро отказались из-за длительности и затратности процесса, сложности проявки и низкой информативности.

В качестве датчиков излучения в быту и промышленности наибольшее распространение получили дозиметры на базе счётчиков Гейгера . Счетчик Гейгера - газоразрядный прибор, в котором ионизация газа излучением превращается в электрический ток между электродами. Как правило, такие приборы корректно регистрируют только гамма-излучение. Некоторые приборы снабжаются специальным фильтром , преобразующим бета-излучение в гамма-кванты за счет тормозного излучения. Счетчики Гейгера плохо селектируют излучения по энергии, для этого используют другую разновидность газоразрядного счетчика, т.н. пропорциональный счётчик .

Широкое применение в науке получили сцинтилляторы . Эти приборы преобразуют энергию излучения в видимый свет за счет поглощения излучения в специальном веществе. Вспышка света регистрируется фотоэлектронным умножителем . Сцинтилляторы хорошо разделяют излучение по энергиям.

Для исследования потоков элементарных частиц применяют множество других методов, позволяющих полнее исследовать их свойства, например пузырьковая камера , камера Вильсона .

Единицы измерения

Эффективность взаимодействия ионизирующего излучения с веществом зависит от типа излучения, энергии частиц и сечения взаимодействия облучаемого вещества. Важные показатели взаимодействия ионизирующего излучения с веществом:

  • линейная передача энергии (ЛПЭ), показывающая, какую энергию излучение передаёт среде на единице длины пробега при единичной плотности вещества.
  • поглощённая доза излучения, показывающая, какая энергия излучения поглощается в единице массы вещества.

Корпускулярное ионизирующее излучение также характеризуется кинетической энергией частиц. Для измерения этого параметра наиболее распространена внесистемная единица электронвольт (русское обозначение: эВ , международное: eV ). Как правило радиоактивный источник генерирует частицы с определенным спектром энергий. Датчики излучений также имеют неравномерную чувствительность по энергии частиц.

Свойства ионизирующих излучений

По механизму взаимодействия с веществом выделяют непосредственно потоки заряженных частиц и косвенно ионизирующее излучение (потоки нейтральных элементарных частиц - фотонов и нейтронов). По механизму образования - первичное (рождённое в источнике) и вторичное (образованное в результате взаимодействия излучения другого типа с веществом) ионизирующее излучение.

Энергия частиц ионизирующего излучения лежит в диапазоне от нескольких сотен электронвольт (рентгеновское излучение, бета-излучение некоторых радионуклидов) до 10 15 - 10 20 и выше электронвольт (протоны космического излучения, для которых не обнаружено верхнего предела по энергии).

Длина пробега и проникающая способность сильно различаются - от микрометров в конденсированной среде (альфа-излучение радионуклидов, осколки деления) до многих километров (высокоэнергетические мюоны космических лучей).

Воздействие на конструкционные материалы

Длительное воздействие корпускулярных излучений или фотонных излучений сверхвысоких энергий может существенно изменять свойства конструкционных материалов. Изучением этих изменений занимается инженерная дисциплина радиационное материаловедение . Раздел физики, занимающийся исследованием поведения твердых тел под облучением, получил название радиационная физика твердого тела . Наиболее значимыми типами радиационных повреждений является:

  • разрушение кристаллической решетки вследствие выбивания атомов из узлов;
  • ионизация диэлектриков;
  • Изменение химического состава веществ вследствие ядерных реакций.

Учёт радиационных повреждений инженерных конструкций наиболее актуален для ядерных реакторов и полупроводниковой электроники, рассчитанной на работу в условиях радиации.

Воздействие на полупроводники

Биологическое действие ионизирующих излучений

Разные типы ионизирующего излучения обладают разным разрушительным эффектом и разным способом воздействия на биологические ткани. Соответственно, одной и той же поглощённой дозе соответствует разная биологическая эффективность излучения. Поэтому для описания воздействия излучения на живые организмы вводят понятие относительной биологической эффективности излучения , которая измеряется с помощью коэффициента качества . Для рентгеновского, гамма- и бета-излучений коэффициент качества принят за 1. Для альфа-излучения и осколков ядер коэффициент качества 10…20. Нейтроны - 3…20 в зависимости от энергии. Для заряженных частиц биологическая эффективность прямо связана с линейной передачей энергии данного типа частиц (средняя потеря энергии частицей на единицу длины пробега частицы в ткани).

Единицы измерения

Для учёта биологического эффекта поглощённой дозы была введена эквивалентная поглощённая доза ионизирующего излучения, численно равная произведению поглощённой дозы на коэффициент биологической эффективности. В системе СИ эффективная и эквивалентная поглощенная доза измеряется в зивертах (русское обозначение: Зв ; международное: Sv ).

Ранее широко применялась единица измерения эквивалентной дозы бэр (от б иологический э квивалент р ентгена для гамма-излучения; русское обозначение: бэр ; международное: rem ). Первоначально единица определялась как доза ионизирующего излучения, производящего такое же биологическое действие, как и доза рентгеновского или гамма-излучения, равная 1 Р. После принятия системы СИ под бэром стали понимать единицу, равную 0,01 Дж/кг. 1 бэр = 0,01 Зв = 100 эрг /г .

Помимо биологической эффективности, необходимо учитывать проникающую способность излучений. Например, тяжёлые ядра атомов и альфа-частицы имеют крайне малую длину пробега в сколько-нибудь плотном веществе, поэтому радиоактивные альфа-источники опасны при попадании внутрь организма. Наоборот, гамма-излучение обладает значительной проникающей способностью.

Некоторые радиоактивные изотопы способны встраиваться в процесс обмена веществ живого организма, замещая неактивные элементы. Это приводит к удержанию и накоплению радиоактивного вещества непосредственно в живых тканях, что существенно увеличивает опасность контакта. Например, широко известны йод-131 , изотопы стронция , плутония и т.п.. Для характеристики этого явления используется понятие период полувыведения изотопа из организма.

Механизмы биологического воздействия

Прямое действие ионизирующих излучений - это прямое попадание в биологические молекулярные структуры клеток и в жидкие (водные) среды организма.

Основным источником информации о стохастических эффектах воздействия ионизирующего излучения являются данные наблюдений за здоровьем людей, переживших атомные бомбардировки или радиационные аварии . Специалисты наблюдали 87 500 человек , переживших атомные бомбардировки. Средняя доза их облучения составила 240 миллизиверт . При этом прирост онкологических заболеваний за последующие годы составил 9 %. При дозах менее 100 миллизиверт отличий между ожидаемой и наблюдаемой в реальности заболеваемостью никто в мире не установил.

Гигиеническое нормирование ионизирующих излучений

Нормирование осуществляется по санитарным правилам и нормативам СанПин 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009) ». Устанавливаются дозовые пределы эффективной дозы для следующих категорий лиц:

  • персонал - лица, работающие с техногенными источниками излучения (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);
  • все население, включая лиц из персонала, вне сферы и условий в их производственной деятельности.

Основные пределы доз и допустимые уровни облучения персонала группы Б равны четверти значений для персонала группы А.

Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет ) 1000 мЗв , а для обычного населения за всю жизнь - 70 мЗв . Планируемое повышенное облучение допускается только для мужчин старше 30 лет при их добровольном письменном согласии после информирования о возможных дозах облучения и риске для здоровья.

Виды ионизирующих излучений

Ионизирующие излучения (ИИ) - потоки элементарных частиц (электронов, позитронов, протонов, нейтронов) и квантов электромагнитной энергии, прохождение которых через вещество приводит к ионизации (образованию разнополярных ионов) и возбуждению его атомов и молекул. Ионизация - превращение нейтральных атомов или молекул в электрически заряженные частицы – ионы.ьИИ попадают на Землю в виде космических лучей, возникают в результате радиоактивного распада атомных ядер (απ β-частицы, γ– и рентгеновские лучи), создаются искусственно на ускорителях заряженных частиц. Практический интерес представляют наиболее часто встречающиеся виды ИИ – потоки а– и β-частиц, γ-излучение, рентгеновские лучи и потоки нейтронов.

Альфа-излучение (а) – поток положительно заряженных частиц – ядер гелия. В настоящее время известно более 120 искусственных и естественных альфа-радиоактивных ядер, которые, испуская α-частицу, теряют 2 протона и 2 нейтрона. Скорость частиц при распаде составляет 20 тыс. км/с. При этом α-частицы обладают наименьшей проникающей способностью, длина их пробега (расстояние от источника до поглощения) в теле равна 0,05 мм, в воздухе – 8–10 см. Они не могут пройти даже через лист бумаги, но плотность ионизации на единицу величины пробега очень велика (на 1 см до десятка тысяч пар), поэтому эти частицы обладают наибольшей ионизирующей способностью и опасны внутри организма.

Бета-излучение (β) – поток отрицательно заряженных частиц. В настоящее время известно около 900 бета-радиоактивных изотопов. Масса β-частиц в несколько десятков тысяч раз меньше α-частиц, но они обладают бо́льшей проникающей способностью. Их скорость равна 200–300 тыс. км/с. Длина пробега потока от источника в воздухе составляет 1800 см, в тканях человека – 2,5 см. β-частицы полностью задерживаются твердыми материалами (алюминиевой пластиной в 3,5 мм, органическим стеклом); их ионизирующая способность в 1000 раз меньше, чем у α-частиц.

Гамма-излучение (γ) – электромагнитное излучение с длиной волны от 1 · 10 -7 м до 1 · 10 -14 м; испускается при торможении быстрых электронов в веществе. Оно возникает при распаде большинства радиоактивных веществ и обладает большой проникающей способностью; распространяется со скоростью света. В электрических и магнитных полях γ-лучи не отклоняются. Это излучение обладает меньшей ионизирующей способностью, чем а– и β-излучение, так как плотность ионизации на единицу длины очень низкая.

Рентгеновское излучение может быть получено в специальных рентгеновских трубках, в электронных ускорителях, при торможении быстрых электронов в веществе и при переходе электронов с внешних электронных оболочек атома на внутренние, когда создаются ионы. Рентгеновские лучи, как и γ-излучение, обладают малой ионизирующей способностью, но большой глубиной проникновения.

Нейтроны - элементарные частицы атомного ядра, их масса в 4 раза меньше массы α-частиц. Время их жизни – около 16 мин. Нейтроны не имеют электрического заряда. Длина пробега медленных нейтронов в воздухе составляет около 15 м, в биологической среде – 3 см; для быстрых нейтронов – соответственно 120 м и 10 см. Последние обладают высокой проникающей способностью и представляют наибольшую опасность.

Выделяют два вида ионизирующих излучений:

Корпускулярное, состоящее из частиц с массой покоя, отличной от нуля (α-, β– и нейтронное излучения);

Электромагнитное (γ– и рентгеновское излучение) – с очень малой длиной волны.

Для оценки воздействия ионизирующего излучения на любые вещества и живые организмы используются специальные величины – дозы излучения. Основная характеристика взаимодействия ионизирующего излучения и среды – это ионизационный эффект. В начальный период развития радиационной дозиметрии чаще всего приходилось иметь дело с рентгеновским излучением, распространявшимся в воздухе. Поэтому в качестве количественной меры поля излучения использовалась степень ионизации воздуха рентгеновских трубок или аппаратов. Количественная мера, основанная на величине ионизации сухого воздуха при нормальном атмосферном давлении, достаточно легко поддающаяся измерению, получила название экспозиционная доза.

Экспозиционная доза определяет ионизирующую способность рентгеновских и γ-лучей и выражает энергию излучения, преобразованную в кинетическую энергию заряженных частиц в единице массы атмосферного воздуха. Экспозиционная доза – это отношение суммарного заряда всех ионов одного знака в элементарном объеме воздуха к массе воздуха в этом объеме. В системе СИ единицей измерения экспозиционной дозы является кулон, деленный на килограмм (Кл/кг). Внесистемная единица – рентген (Р). 1 Кл/кг = 3880 Р. При расширении круга известных видов ионизирующего излучения и сфер его приложения оказалось, что мера воздействия ионизирующего излучения на вещество не поддается простому определению из-за сложности и многообразности протекающих при этом процессов. Важнейшим из них, дающим начало физико-химическим изменениям в облучаемом веществе и приводящим к определенному радиационному эффекту, является поглощение энергии ионизирующего излучения веществом. В результате этого возникло понятие поглощенная доза.

Поглощенная доза показывает, какое количество энергии излучения поглощено в единице массы любого облучаемого вещества, и определяется отношением поглощенной энергии ионизирующего излучения на массу вещества. За единицу измерения поглощенной дозы в системе СИ принят грэй (Гр). 1 Гр – это такая доза, при которой массе 1 кг передается энергия ионизирующего излучения 1 Дж. Внесистемной единицей поглощенной дозы является рад. 1 Гр = 100 рад. Изучение отдельных последствий облучения живых тканей показало, что при одинаковых поглощенных дозах различные виды радиации производят неодинаковое биологическое воздействие на организм. Обусловлено это тем, что более тяжелая частица (например, протон) производит на единице пути в ткани больше ионов, чем легкая (например, электрон). При одной и той же поглощенной дозе радиобиологический разрушительный эффект тем выше, чем плотнее ионизация, создаваемая излучением. Чтобы учесть этот эффект, было введено понятие эквивалентной дозы.

Эквивалентная доза рассчитывается путем умножения значения поглощенной дозы на специальный коэффициент – коэффициент относительной биологической эффективности (ОБЭ) или коэффициент качества. Значения коэффициента для различных видов излучений приведены в табл. 7.



Таблица 7

Коэффициент относительной биологической эффективности для различных видов излучений

Единицей измерения эквивалентной дозы в СИ является зиверт (Зв). Величина 1 Зв равна эквивалентной дозе любого вида излучения, поглощенной в 1 кг биологической ткани и создающей такой же биологический эффект, как и поглощенная доза в 1 Гр фотонного излучения. Внесистемной единицей измерения эквивалентной дозы является бэр (биологический эквивалент рада). 1 Зв = 100 бэр. Одни органы и ткани человека более чувствительны к действию радиации, чем другие: например, при одинаковой эквивалентной дозе возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения разных органов и тканей следует учитывать с разным коэффициентом, который называется коэффициентом радиационного риска. Умножив значение эквивалентной дозы на соответствующий коэффициент радиационного риска и просуммировав по всем тканям и органам, получим эффективную дозу, отражающую суммарный эффект для организма. Взвешенные коэффициенты устанавливают эмпирически и рассчитывают таким образом, чтобы их сумма для всего организма составляла единицу. Единицы измерения эффективной дозы совпадают с единицами измерения эквивалентной дозы. Она также измеряется в зивертах или бэрах.

Задача (для разогрева):

Расскажу я вам, дружочки,
Как выращивать грибочки:
Нужно в поле утром рано
Сдвинуть два куска урана...

Вопрос: Какова должна быть общая масса кусков урана, чтобы произошел ядерный взрыв?

Ответ (для того, чтобы увидеть ответ - нужно выделить текст) : Для урана-235 критическая масса составляет примерно 500 кг., если взять шарик такой массы, то диаметр такого шара будет равен 17 см.

Радиация, что это?

Радиация (в переводе с английского "radiation") - это излучение, которое применяется не только в отношении радиоактивности, но и для ряда других физических явлений, например: солнечная радиация, тепловая радиация и др. Таким образом, в отношении радиоактивности необходимо использовать принятое МКРЗ (Международной комиссией по радиационной защите) и правилами радиационной безопасности словосочетание "ионизирующее излучение".

Ионизирующее излучение, что это?

Ионизирующее излучение - излучение (электромагнитное, корпускулярное), которое вызывает ионизацию (образование ионов обоих знаков) вещества (среды). Вероятность и количество образованных пар ионов зависит от энергии ионизирующего излучения.

Радиоактивность, что это?

Радиоактивность – излучение возбужденных ядер или самопроизвольное превращение неустойчивых атомных ядер в ядра других элементов, сопровождающееся испусканием частиц или γ -кванта (ов). Трансформация обычных нейтральных атомов в возбужденное состояние происходит под воздействием внешней энергии различного рода. Далее возбужденное ядро стремится снять избыточную энергию путем излучения (вылет альфа-частицы, электронов, протонов, гамма-квантов (фотонов), нейтронов), до достижения стабильного состояния. Многие тяжелые ядра (трансурановый ряд в таблице Менделеева - торий, уран, нептуний, плутоний и др.) изначально находятся в нестабильном состоянии. Они способны спонтанно распадаться. Этот процесс также сопровождается излучением. Такие ядра называются естественными радионуклидами.

На этой анимации наглядно показано явление радиоактивности.

Камера Вильсона (пластиковый бокс охлажденный до -30 °C) наполнена паром изопропилового спирта. Жюльен Саймонпоместил в нее 0,3-cm³ кусок радиоактивного урана (минерала уранинит). Минерал излучает α-частицы и бета-частицы, так как он содержит U-235 и U-238. На пути движения α и бета частиц находятся молекулы изопропилового спирта.

Поскольку частицы заряжены (альфа – положительно, бета – отрицательно), то они могут отрывать электрон от молекулы спирта (альфа частица) или добавить электроны молекулам спирта бета частицы). Это, в свою очередь, дает молекулам заряд, который затем привлекает незаряженные молекулы вокруг них. Когда молекулы собираются в кучу, то получаются заметные белые облака, что прекрасно видно на анимации. Так мы легко можем проследить пути выбрасываемых частиц.

α-частицы создают прямые, густые облака, в то время как бета-частицы создают длинные.

Изотопы, что это?

Изотопы – это разнообразие атомов одного и того же химического элемента, располагающие разными массовыми числами, но включающие одинаковый электрический заряд атомных ядер и, следовательно, занимающие в периодической системе элементов Д.И. Менделеева единое место. Например: 131 55 Cs, 134 m 55 Cs, 134 55 Cs, 135 55 Cs, 136 55 Cs, 137 55 Cs. Т.е. заряд в большей степени определяет химические свойства элемента.

Существуют изотопы устойчивые (стабильные) и неустойчивые (радиоактивные изотопы) – спонтанно распадающиеся. Известно около 250 стабильных и около 50 естественных радиоактивных изотопов. Примером устойчивого изотопа может служить 206 Pb, являющийся конечным продуктом распада естественного радионуклида 238 U, который в свою очередь появился на нашей Земле в начале образования мантии и не связан с техногенным загрязнением.

Какие виды ионизирующего излучения существуют?

Основными видами ионизирующего излучения, с которыми чаще всего приходится сталкиваться, являются:

  • альфа-излучение;
  • бета-излучение;
  • гамма-излучение;
  • рентгеновское излучение.

Конечно, имеются и другие виды излучения (нейтронное, позитронное и др.), но с ними мы встречаемся в повседневной жизни заметно реже. Каждый вид излучения обладает своими ядерно-физическими характеристиками и как следствие – различным биологическим воздействии на организм человека. Радиоактивный распад может сопровождаться одним из видов излучения или сразу несколькими.

Источники радиоактивности бывают природными или искусственными. Природные источники ионизирующего излучения - это радиоактивные элементы, находящиеся в земной коре и образующие природный радиационный фон вместе с космическим излучением.

Искусственные источники радиоактивности, как правило, образуются в ядерных реакторах или ускорителях на основе ядерных реакций. Источниками искусственных ионизирующих излучений могут быть и разнообразные электровакуумные физические приборы, ускорители заряженных частиц и др. Например: кинескоп телевизора, рентгеновская трубка, кенотрон и др.

Альфа-излучение (α -излучение) - корпускулярное ионизирующее излучение, состоящее из альфа-частиц (ядер гелия). Образуются при радиоактивном распаде и ядерных превращениях. Ядра гелия обладают достаточно большими массой и энергией до 10 МэВ (Мегаэлектрон-Вольт). 1 эВ = 1,6∙10 -19 Дж. Имея несущественный пробег в воздухе (до 50 см) представляют высокую опасность для биологических тканей при попадании на кожу, слизистые оболочки глаз и дыхательных путей, при попадании внутрь организма в виде пыли или газа (радон-220 и 222). Токсичность альфа-излучения, обуславливается колоссально высокой плотностью ионизации из-за высокой энергии и массы.

Бета-излучение (β -излучение) - корпускулярное электронное или позитронное ионизирующее излучение соответствующего знака с непрерывным энергетическим спектром. Характеризуется максимальной энергией спектра Е β max , или средней энергией спектра. Пробег электронов (бета-частиц) в воздухе достигает нескольких метров (в зависимости от энергии), в биологических тканях пробег бета-частицы составляет несколько сантиметров. Бета-излучение, как и альфа-излучение, представляет опасность при контактном облучении (поверхностном загрязнении), например, при попадании внутрь организма, на слизистые оболочки и кожные покровы.

Гамма-излучение (γ –излучение или гамма кванты) – коротковолновое электромагнитное (фотонное) излучение с длиной волны

Рентгеновское излучение - по своим физическим свойствам подобно гамма-излучению, но имеющее ряд особенностей. Оно появляется в рентгеновской трубке вследствие резкой остановки электронов на керамической мишени-аноде (то место, куда ударяются электроны, изготавливают, как правило, из меди или молибдена) после ускорения в трубке (непрерывный спектр - тормозное излучение) и при выбивании электронов из внутренних электронных оболочек атома мишени (линейчатый спектр). Энергия рентгеновского излучения небольшая – от долей единиц эВ до 250 кэВ. Рентгеновское излучение можно получить, используя ускорители заряженных частиц, - синхротронное излучение с непрерывным спектром, имеющим верхнюю границу.

Прохождение радиации и ионизирующих излучений через препятствия:

Чувствительность человеческого организма к воздействию радиации и ионизирующих излучений на него:

Что такое источник излучения?

Источник ионизирующего излучения (ИИИ) - объект, который включает в себя радиоактивное вещество или техническое устройство, которое создает или в определенных случаях способно создавать ионизирующее излучение. Различают закрытые и открытые источники излучения.

Что такое радионуклиды?

Радионуклиды – ядра, подверженные спонтанному радиоактивному распаду.

Что такое период полураспада?

Период полураспада – период времени, в течение которого число ядер данного радионуклида в результате радиоактивного распада снижается в два раза. Эта величина используется в законе радиоактивного распада.

В каких единицах измеряется радиоактивность?

Активность радионуклида в соответствии с системой измерений СИ измеряется в Беккерелях (Бк) – по имени французского физика, открывшего радиоактивность в 1896г.), Анри Беккереля. Один Бк равен 1 ядерному превращению в секунду. Мощность радиоактивного источника измеряется соответственно в Бк/с. Отношение активности радионуклида в образце к массе образца называется удельная активность радионуклида и измеряется в Бк/кг (л).

В каких единицах измеряется ионизирующее излучение (рентгеновское и гамма) ?

Что же мы видим на дисплее современных дозиметров, измеряющих ИИ? МКРЗ предложила для оценки облучения человека измерять дозу на глубине d, равной 10 мм. Измеряемая величина дозы на этой глубине получила название амбиентный эквивалент дозы, измеряемая в зивертах (Зв). Фактически это расчетная величина, где поглощенная доза умножена на взвешивающий коэффициент для данного вида излучения и коэффициент, характеризующий чувствительность различных органов и тканей к конкретному виду излучения.

Эквивалентная доза (или часто употребляемое понятие «доза») – равна произведению поглощенной дозы на коэффициент качества воздействия ионизирующего излучения (например: коэффициент качества воздействия гамма-излучения составляет 1, а альфа-излучения – 20).

Единица измерения эквивалентной дозы – бэр (биологический эквивалент рентгена) и его дольные единицы: миллибэр (мбэр) микробэр (мкбэр) и т.д., 1 бэр = 0,01 Дж/кг. Единица измерения эквивалентной дозы в системе СИ – зиверт, Зв,

1 Зв = 1 Дж/кг = 100 бэр.

1 мбэр = 1*10 -3 бэр; 1 мкбэр = 1*10 -6 бэр;

Поглощенная доза - количество энергии ионизирующего излучения, которое поглощено в элементарном объеме, отнесенной к массе вещества в этом объеме.

Единица поглощенной дозы – рад, 1 рад = 0,01 Дж/кг.

Единица поглощенной дозы в системе СИ – грей, Гр, 1 Гр=100 рад=1 Дж/кг

Мощность эквивалентной дозы (или мощность дозы) – это отношение эквивалентной дозы на промежуток времени ее измерения (экспозиции), единица измерения бэр/час, Зв/час, мкЗв/с и т.д.

В каких единицах измеряется альфа- и бета-излучение?

Количество альфа- и бета-излучения определяется как плотности потока частиц с единицы площади, в единицу времени - a-частиц*мин/см 2 , β-частиц*мин/см 2 .

Что вокруг нас радиоактивно?

Почти все что нас окружает, даже сам человек. Естественная радиоактивность в какой-то мере является натуральной средой обитания человека, если она не превышает естественных уровней. На планете есть участки с повышенным относительно среднего уровня радиационного фона. Однако в большинстве случаев, каких-либо весомых отклонений в состоянии здоровья населения при этом не наблюдается, так как эта территория является их естественной средой обитания. Примером такого участка территории является, например, штат Керала в Индии.

Для истинной оценки, возникающих иногда в печати пугающих цифр, следует отличать:

  • естественную, природную радиоактивность;
  • техногенную, т.е. изменение радиоактивности среды обитания под влиянием человека (добыча ископаемых, выбросы и сбросы промышленных предприятий, аварийные ситуации и много другое).

Как правило, устранить элементы природной радиоактивности почти невозможно. Как можно избавиться от 40 К, 226 Ra, 232 Th, 238 U,которые повсюду распространены в земной коре и находятся практически во всем, что нас окружает, и даже в нас самих?

Из всех природных радионуклидов наибольшую опасность для здоровья человека представляют продукты распада природного урана (U-238) - радий (Ra-226) и радиоактивный газ радон (Ra-222). Главными «поставщиками» радия-226 в окружающую природную среду являются предприятия, занимающиеся добычей и переработкой различных ископаемых материалов: добыча и переработка урановых руд; нефти и газа; угольная промышленность; производство строительных материалов; предприятия энергетической промышленности и др.

Радий-226 хорошо подвержен выщелачиванию из минералов содержащих уран. Этим его свойством объясняется наличие крупных количеств радия в некоторых видах подземных вод (некоторые из них, обогащенные газом радоном применяются в медицинской практике), в шахтных водах. Диапазон содержания радия в подземных водах варьируется от единиц до десятков тысяч Бк/л. Содержание радия в поверхностных природных водах значительно ниже и может составлять от 0.001 до 1-2 Бк/л.

Значительной составляющей природной радиоактивности является продукт распада радия-226 - радон-222.

Радон – инертный, радиоактивный газ, без цвета и запаха с периодом полураспада 3.82 дня. Альфа-излучатель. Он в 7.5 раза тяжелее воздуха, поэтому большей частью концентрируется в погребах, подвалах, цокольных этажах зданий, в шахтных горных выработках, и т.д.

Считается, что до 70% действия радиации на население связано с радоном в жилых зданиях.

Главным источником поступления радона в жилые здания являются (по мере возрастания значимости):

  • водопроводная вода и бытовой газ;
  • строительные материалы (щебень, гранит, мрамор, глина, шлаки, и др.);
  • почва под зданиями.

Более подробно о радоне и прибораз для его измерения: РАДИОМЕТРЫ РАДОНА И ТОРОНА .

Профессиональные радиометры радона стоят неподъемные деньги, для бытового использования - рекомендуем Вам обратить внимание на бытовой радиометр радона и торона производства Германия: Radon Scout Home .

Что такое "черные пески" и какую опасность они представляют?


«Черные пески» (цвет варьируется от светло-желтого до красно-бурого, коричневого, встречаются разновидности белого, зеленоватого оттенка и черные) представляют собой минерал монацит - безводный фосфат элементов ториевой группы, главным образом церия и лантана (Ce, La)PO 4 , которые заменяются торием. Монацит насчитывает до 50-60% окисей редкоземельных элементов: окиси иттрия Y 2 O 3 до 5%, окиси тория ThO 2 до 5-10%, иногда до 28%. Попадается в пегматитах, иногда в гранитах и гнейсах. При разрушении горных пород содержащих монацит, он собирается в россыпях, которые представляют собой крупные месторождения.

Россыпи монацитовых песков существующие на суше, как правило, не вносят особенного изменения в получившуюся радиационную обстановку. А вот месторождения монацита находящиеся у прибрежной полосы Азовского моря (в пределах Донецкой области), на Урале (Красноуфимск) и др. областях создают ряд проблем, связанных с возможностью облучения.

Например, из-за морского прибоя за осенне-весенний период на побережье, в следствии естественной флотации, набирается существенное количество "черного песка", характеризующегося высоким содержанием тория-232 (до 15-20 тыс. Бк/кг и более), который создает на локальных участках уровни гамма-излучения порядка 3,0 и более мкЗв/час. Естественно, отдыхать на таких участках небезопасно, поэтому ежегодно проводится сбор этого песка, выставляются предупреждающие знаки, закрываются некоторые участки побережья.

Средства измерения радиации и радиоактивности.


Для измерения уровней радиации и содержания радионуклидов в разных объектах применяются специальные средства измерения:

  • для измерения мощности экспозиционной дозы гамма излучения, рентгеновского излучения, плотности потока альфа и бета-излучения, нейтронов, применяются дозиметры и поисковые дозиметры-радиометры разных типов;
  • для определения вида радионуклида и его содержания в объектах окружающей среды применяются спектрометры ИИ, которые состоят из детектора излучения, анализатора и персонального компьютера с соответствующей программой для обработки спектра излучения.

В настоящее время присутствует большое количество дозиметров различного типа для решения различных задач радиационного контроля и имеющие широкие возможности.

Вот для примера дозиметры, которые чаще всего используются в профессиональной деятельности:

  1. Дозиметр-радиометр МКС-АТ1117М (поисковый дозиметр-радиометр) – профессиональный радиометр используется для поиска и выявления источников фотонного излучения. Имеет цифровой индикатор, возможность установки порога срабатывания звукового сигнализатора, что очень облегчает работу при обследовании территорий, проверки металлолома и др. Блок детектирования выносной. В качестве детектора применяется сцинтилляционный кристалл NaI. Дозиметр является универсальным решением различных задач, комплектуется десятком различных блоков детектирования с разными техническими характеристиками. Измерительные блоки позволяют измерять альфа, бета, гамма, рентгеновское и нейтронное излучения.

    Информация о блоках детектирования и их применению:

Наименование блока детектирования

Измеряемое излучение

Основная особенность (техническая характеристика)

Область применения

БД для альфа излучения

Диапазон измерения 3,4·10 -3 - 3,4·10 3 Бк·см -2

БД для измерения плотности потока альфа-частиц с поверхности

БД для бета излучения

Диапазон измерения 1 - 5·10 5 част./(мин·см 2)

БД для измерения плотности потока бета-частиц с поверхности

БД для гамма излучения

Чувствительность

350 имп·с -1 /мкЗв·ч -1

Диапазон измерения

0,03 - 300 мкЗв/ч

Оптимальный вариант по цене, качество, технические характеристики. Имеет широкое применение в области измерения гамма-излучения. Хороший поисковый блок детектирования для нахождения источников излучения.

БД для гамма излучения

Диапазон измерения 0,05 мкЗв/ч - 10 Зв/ч

Блок детектирования имеющий очень высокий верхний порог измерения гамма-излучения.

БД для гамма излучения

Диапазо измерения 1 мЗв/ч - 100 Зв/ч Чувствительность

900 имп·с -1 /мкЗв·ч -1

Дорогой блок детектирования, обладающий высоким диапазоном измерения и отличную чувствительность. Используется для нахождения источников излучения с сильным излучением.

БД для рентгеновского излучения

Диапазон энергии

5 - 160 кэВ

Блок детектирования для рентгеновского излучения. Широко применяется в медицине и установках работающих с выделением рентгеновского излучения маленькой энергии.

БД для нейтронного излучения

Диапазон измерения

0,1 - 10 4 нейтр/(с·см 2) Чувствительность 1,5 (имп·с -1)/(нейтрон·с -1 ·см -2)

БД для альфа, бета, гамма и рентгеновского излучения

Чувствительность

6,6 имп·с -1 /мкЗв·ч -1

Универсальный блок детектирования, который позволяет измерять альфа, бета, гамма и рентгеновское излучения. Обладает небольшой стоимостью и плохой чувствительностью. Нашел широкое примирение в области аттестация рабочих мест (АРМ), где в основном требуется проводить измерение локального объекта.

2. Дозиметр-радиометр ДКС-96 – предназначен для измерения гамма и рентгеновского излучения, альфа излучения, бета излучения, нейтронного излучения.

Во многом аналогичен дозиметру-радиометру .

  • измерение дозы и мощности амбиентного эквивалента дозы (далее дозы и мощности дозы) Н*(10) и Н*(10) непрерывного и импульсного рентгеновского и гамма-излучений;
  • измерение плотности потока альфа- и бета-излучений;
  • измерение дозы Н*(10) нейтронного излучения и мощности дозы Н*(10) нейтронного излучения;
  • измерение плотности потока гамма-излучения;
  • поиск, а так же локализация радиоактивных источников и источников загрязнений;
  • измерение плотности потока и мощности экспозиционной дозы гамма-излучения в жидких средах;
  • радиационный анализ местности с учетом географических координат, используя GPS;

Двухканальный сцинтилляционный бета-гамма-спектрометр предназначен для единовременного и раздельного определения:

  • удельной активности 137 Cs, 40 K и 90 Sr в пробах различной окружающей среды;
  • удельной эффективной активности естественных радионуклидов 40 K, 226 Ra, 232 Th в строительных материалах.

Позволяет обеспечивать экспресс-анализ стандартизованных проб плавок металла на наличие радиационного излучения и загрязнения.

9. Гамма-спектрометр на основе ОЧГ детектора Спектрометры на основе коаксиальных детекторов из ОЧГ (особо чистого германия) предназначены для регистрации гамма-излучения в диапазоне энергий от 40 кэВ до З МэВ.

    Спектрометр бета и гамма излучения МКС-АТ1315

    Спектрометр со свинцовой защитой NaI ПАК

    Портативный NaI спектрометр МКС-АТ6101

    Носимый ОЧГ спектрометр Эко ПАК

    Портативный ОЧГ спектрометр Эко ПАК

    Спектрометр NaI ПАК автомобильного исполнения

    Спектрометр MKS-AT6102

    Спектрометр Эко ПАК с электромашинным охлаждением

    Ручной ППД спектрометр Эко ПАК

Ознакомиться с другими средствами измерения для измерения ионизирующего излучения, Вы можете у нас на сайте:

  • при проведении дозиметрических измерений, если подразумевается их частое проведение с целью слежения за радиационной обстановкой, необходимо строго соблюдать геометрию и методику измерения;
  • для увеличения надежности дозиметрического контроля нужно проводить несколько измерений (но не менее 3-х), затем рассчитать среднее арифметическое;
  • при замерах фона дозиметра на местности выбирают участки, удаленные на 40 м от зданий и сооружений;
  • измерения на местности проводят на двух уровнях: на высоте 0.1 (поиск) и 1.0 м (измерение для протокола – при этом следует вращать датчик с целью определения максимального значения на дисплее) от поверхности грунта;
  • при измерении в жилых и общественных помещениях, измерения проводятся в на высоте 1.0 м от пола, желательно в пяти точках методом «конверта». На первый взгляд, трудно понять, что происходит на фотографии. Из-под пола словно вырос гигантский гриб, а призрачные люди в касках как будто работают рядом с ним...

    На первый взгляд, трудно понять, что происходит на фотографии. Из-под пола словно вырос гигантский гриб, а призрачные люди в касках как будто работают рядом с ним...

    Нечто необъяснимо жуткое в этой сцене, и тому есть причина. Вы видите крупнейшее скопление, вероятно, самого токсичного вещества, когда-либо созданного человеком. Это ядерная лава или кориум.

    В течение дней и недель после аварии на Чернобыльской атомной электростанции 26 апреля 1986 года просто зайти в помещение с такой же кучей радиоактивного материала - её мрачно прозвали "слоновья нога" - означало верную смерть через несколько минут. Даже десятилетие спустя, когда была сделана эта фотография, вероятно, из-за радиации фотоплёнка вела себя странно, что проявилось в характерной зернистой структуре. Человек на фотографии, Артур Корнеев, скорее всего, посещал это помещение чаще, чем кто-нибудь другой, так что подвергся, пожалуй, максимальной дозе радиации.

    Удивительно, но, по всей вероятности, он ещё жив. История, как США получили во владение уникальную фотографию человека в присутствии невероятно токсичного материала сама по себе окутана тайной - также как и причины, зачем кому-то понадобилось делать селфи рядом с горбом расплавленной радиоактивной лавы.

    Фотография впервые попала в Америку в конце 90-х, когда новое правительство получившей независимость Украины взяло под контроль ЧАЭС и открыло Чернобыльский центр по проблемам ядерной безопасности, радиоактивных отходов и радиоэкологии. Вскоре Чернобыльский центр пригласил другие страны к сотрудничеству в проектах ядерной безопасности. Министерство энергетики США распорядилось оказать помощь, направив соответствующий приказ в Pacific Northwest National Laboratories (PNNL) - многолюдный научно-исследовательский центр в Ричленде, шт. Вашингтон.

    В то время Тим Ледбеттер (Tim Ledbetter) являлся одним из новичков в ИТ-отделе PNNL, и ему поручили создать библиотеку цифровых фотографий для Проекта по ядерной безопасности Министерства энергетики, то есть для демонстрации фотографий американской публике (точнее, для той крохотной части публики, которая тогда имела доступ в интернет). Он попросил участников проекта сделать фотографии во время поездок в Украину, нанял фотографа-фрилансера, а также попросил материалы у украинских коллег в Чернобыльском центре. Среди сотен фотографий неуклюжих рукопожатий чиновников и людей в лабораторных халатах, однако, есть с десяток снимков с руинами внутри четвёртого энергоблока, где десятилетием раньше, 26 апреля 1986 года, во время испытания турбогенератора произошёл взрыв.

    Когда радиоактивный дым поднялся над станицей, отравляя окружающую землю, снизу сжижились стержни, расплавившись через стенки реактора и сформировав субстанцию под названием кориум.

    Когда радиоактивный дым поднялся над станицей, отравляя окружающую землю, снизу сжижились стержни, расплавившись через стенки реактора и сформировав субстанцию под названием кориум .

    Кориум формировался за пределами научно-исследовательских лабораторий минимум пять раз, говорит Митчелл Фармер (Mitchell Farmer), ведущий инженер-ядерщик в Аргоннской национальной лаборатории, ещё одном учреждении Министерства энергетики США в окрестностях Чикаго. Однажды кориум сформировался на реакторе Three Mile Island в Пенсильвании в 1979 году, однажды в Чернобыле и три раза при расплавлении реактора в Фукусиме в 2011 году. В своей лаборатории Фармер создал модифицированные версии кориума, чтобы лучше понять, как избежать подобных происшествий в будущем. Исследование субстанции показало, в частности, что полив водой после формирования кориума в реальности препятствует распаду некоторых элементов и образованию более опасных изотопов.

    Из пяти случаев формирования кориума только в Чернобыле ядерная лава смогла вырваться за пределы реактора. Без системы охлаждения радиоактивная масса ползла по энергоблоку в течение недели после аварии, вбирая в себя расплавленный бетон и песок, которые перемешивались с молекулами урана (топливо) и циркония (покрытие). Эта ядовитая лава текла вниз, в итоге расплавив пол здания. Когда инспекторы наконец проникли в энергоблок через несколько месяцев после аварии, они обнаружили 11-тонный трёхметровый оползень в углу коридора парораспределения внизу. Тогда его и назвали "слоновьей ногой". В течение последующих лет "слоновью ногу" охлаждали и дробили. Но даже сегодня её остатки всё ещё теплее окружающей среды на несколько градусов, поскольку распад радиоактивных элементов продолжается.

    Ледбеттер не может вспомнить, где конкретно он добыл эти фотографии. Он составил фотобиблиотеку почти 20 лет назад, и веб-сайт, где они размещаются, до сих пор в хорошей форме; только уменьшенные копии изображений потерялись. (Ледбеттер, всё ещё работающий в PNNL, был удивлён узнать, что фотографии до сих пор доступны в онлайне). Но он точно помнит, что никого не отправлял фотографировать "слоновью ногу", так что её, скорее всего, прислал кто-то из украинских коллег.

    Фотография начала распространяться по другим сайтам, а в 2013 году на неё наткнулся Кайл Хилл (Kyle Hill), когда писал статью о "слоновьей ноге" для журнала Nautilus. Он отследил её происхождение до лаборатории PNNL. На сайте было найдено давно потерянное описание фотографии: "Артур Корнеев, зам. директора объекта Укрытие, изучает ядерную лаву "слоновью ногу", Чернобыль. Фотограф: неизвестен. Осень 1996". Ледбеттер подтвердил, что описание соответствует фотографии.

    Артур Корнеев - инспектор из Казахстана, который занимался образованием сотрудников, рассказывая и защищая их от "слоновьей ноги" с момента её образования после взрыва на ЧАЭС в 1986 году, любитель мрачно пошутить. Скорее всего, последним с ним разговаривал репортёр NY Times в 2014 году в Славутиче - городе, специально построенном для эвакуированного персонала из Припяти (ЧАЭС).

    Вероятно, снимок сделан с более длинной выдержкой, чем другие фотографии, чтобы фотограф успел появиться в кадре, что объясняет эффект движения и то, почему наголовный фонарь выглядит как молния. Зернистость фотографии, вероятно, вызвана радиацией.

    Для Корнеева это конкретное посещение энергоблока было одним из нескольких сотен опасных походов к ядру с момента его первого дня работы в последующие дни после взрыва. Его первым заданием было выявлять топливные отложения и помогать замерять уровни радиации ("слоновья нога" изначально "светилась" более чем на 10 000 рентген в час, что убивает человека на расстоянии метра менее чем за две минуты). Вскоре после этого он возглавил операцию по очистке, когда с пути иногда приходилось убирать цельные куски ядерного топлива. Более 30 человек погибло от острой лучевой болезни во время очистки энергоблока. Несмотря на невероятную дозу полученного облучения, сам Корнеев продолжал возвращаться в спешно построенный бетонный саркофаг снова и снова, часто с журналистами, чтобы оградить их от опасности.

    В 2001 году он привёл репортёра Associated Press к ядру, где уровень радиации был 800 рентген в час. В 2009 году известный беллетрист Марсель Теру написал статью для Travel + Leisure о своём походе в саркофаг и о сумасшедшем провожатом без противогаза, который издевался над страхами Теру и говорил, что это "чистая психология". Хотя Теру именовал его как Виктора Корнеева, по всей вероятности человеком был Артур, поскольку он опускал такие же чёрные шутки через несколько лет с журналистом NY Times.

    Его нынешнее занятие неизвестно. Когда Times нашло Корнеева полтора года назад, он помогал в строительстве свода для саркофага - проекта стоимостью $1,5 млрд, который должен быть закончен в 2017 году. Планируется, что свод полностью закроет Убежище и предотвратит утечку изотопов. В свои 60 с чем-то лет Корнеев выглядел болезненно, страдал от катаракт, и ему запретили посещение саркофага после многократного облучения в предыдущие десятилетия.

    Впрочем, чувство юмора Корнеева осталось неизменным . Похоже, он ничуть не жалеет о работе своей жизни: "Советская радиация, - шутит он, - лучшая радиация в мире" .




Рассказать друзьям