Теория струн и суперструн. Что такое теория струн — кратко и понятно для чайников

💖 Нравится? Поделись с друзьями ссылкой

Приходила ли вам в голову мысль, что Вселенная похожа на виолончель? Правильно – не приходила. Потому что Вселенная не похожа на виолончель. Но это не означает, что у нее нет струн. Поговорим сегодня про Теорию струн.

Конечно, струны мироздания едва ли похожи на те, которые мы себе представляем. В теории струн ими называются невероятно малые вибрирующие нити энергии. Эти нити похожи, скорее, на крошечные «резинки», способные извиваться, растягиваться и сжиматься на все лады. Все это, однако, не означает, что на них нельзя «сыграть» симфонию Вселенной, ведь из этих «нитей», по мнению струнных теоретиков, состоит все сущее.

Противоречие физики

Во второй половине XIX века физикам казалось, что ничего серьезного в их науке открыть больше нельзя. Классическая физика считала, что серьезных проблем в ней не осталось, а все устройство мира выглядело идеально отлаженной и предсказуемой машиной. Беда, как и водится, случилась из-за ерунды – одного из мелких «облачков», еще остававшихся на чистом, понятном небе науки. А именно – при расчете энергии излучения абсолютно черного тела (гипотетическое тело, которое при любой температуре полностью поглощает падающее на него излучение, независимо от длины волны – NS).

Расчеты показывали, что общая энергия излучения любого абсолютно черного тела должна быть бесконечно большой. Чтобы уйти от столь явного абсурда, немецкий ученый Макс Планк в 1900 году предположил, что видимый свет, рентгеновские лучи и другие электромагнитные волны могут испускаться только некоторыми дискретными порциями энергии, которые он назвал квантами. С их помощью удалось решить частную проблему абсолютно черного тела. Однако последствия квантовой гипотезы для детерминизма тогда еще не осознавались. Пока в 1926 году другой немецкий ученый, Вернер Гейзенберг, не сформулировал знаменитый принцип неопределенности.

Суть его сводится к тому, что вопреки всем господствующим до того утверждениям, природа ограничивает нашу способность предсказывать будущее на основе физических законов. Речь, конечно, идет о будущем и настоящем субатомных частиц. Выяснилось, что они ведут себя совершенно не так, как это делают любые вещи в окружающем нас макромире. На субатомном уровне ткань пространства становится неровной и хаотичной. Мир крошечных частиц настолько бурный и непонятный, что это противоречит здравому смыслу. Пространство и время в нем настолько искривлены и переплетены, что там нет обычных понятий левого и правого, верха и низа, и даже до и после.

Не существует способа сказать наверняка, в какой именно точке пространства находится в данный момент та или иная частица, и каков при этом момент ее импульса. Существует лишь некая вероятность нахождения частицы во множестве областей пространства-времени. Частицы на субатомном уровне словно «размазаны» по пространству. Мало этого, не определен и сам «статус» частиц: в одних случаях они ведут себя как волны, в других – проявляют свойства частиц. Это то, что физики называют корпускулярно-волновым дуализмом квантовой механики.

Уровни строения мира: 1. Макроскопический уровень – вещество 2. Молекулярный уровень 3. Атомный уровень – протоны, нейтроны и электроны 4. Субатомный уровень – электрон 5. Субатомный уровень – кварки 6. Струнный уровень

В Общей теории относительности, словно в государстве с противоположными законами, дело обстоит принципиально иначе. Пространство представляется похожим на батут – гладкую ткань, которую могут изгибать и растягивать объекты, обладающие массой. Они создают деформации пространства-времени – то, что мы ощущаем как гравитацию. Стоит ли говорить, что стройная, правильная и предсказуемая Общая теория относительности находится в неразрешимом конфликте с «взбалмошной хулиганкой» – квантовой механикой, и, как следствие, макромир не может «помириться» с микромиром. Вот тут на помощь и приходит теория струн.

2D-Вселенная. Граф полиэдра E8 Теория Всего

Теория струн воплощает мечту всех физиков по объединению двух, в корне противоречащих друг другу ОТО и квантовой механики, мечту, которая до конца дней не давала покоя величайшему «цыгану и бродяге» Альберту Эйнштейну.

Многие ученые уверены, что всё, от изысканного танца галактик до безумной пляски субатомных частиц, может в итоге объясняться всего одним фундаментальным физическим принципом. Может быть – даже единым законом, который объединяет все виды энергии, частиц и взаимодействий в какой-нибудь элегантной формуле.

ОТО описывает одну из самых известных сил Вселенной – гравитацию. Квантовая механика описывает три других силы: сильное ядерное взаимодействие, которое склеивает протоны и нейтроны в атомах, электромагнетизм и слабое взаимодействие, которое участвует в радиоактивном распаде. Любое событие в мироздании, от ионизации атома до рождения звезды, описывается взаимодействиями материи посредством этих четырех сил.

С помощью сложнейшей математики удалось показать, что электромагнитное и слабое взаимодействия имеют общую природу, объединив их в единое электрослабое. Впоследствии к ним добавилось и сильное ядерное взаимодействие – но вот гравитация к ним не присоединяется никак. Теория струн – одна из самых серьезных кандидаток на то, чтобы соединить все четыре силы, а, значит, объять все явления во Вселенной – недаром ее еще называют «Теорией Всего».

Вначале был миф

До сих пор далеко не все физики пребывают в восторге от теории струн. А на заре ее появления она и вовсе казалась бесконечно далекой от реальности. Само ее рождение – легенда.

График бета-функции Эйлера при вещественных аргументах

В конце 1960-х годов молодой итальянский физик-теоретик Габриэле Венециано искал уравнения, которые смогли бы объяснить сильные ядерные взаимодействия – чрезвычайно мощный «клей», который скрепляет ядра атомов, связывая воедино протоны и нейтроны. Согласно легенде, как-то он случайно наткнулся на пыльную книгу по истории математики, в которой нашел функцию двухсотлетней давности, впервые записанную швейцарским математиком Леонардом Эйлером. Каково же было удивление Венециано, когда он обнаружил, что функция Эйлера, которую долгое время считали ничем иным, как математической диковинкой, описывает это сильное взаимодействие.

Как же было на самом деле? Формула, вероятно, стала результатом долгих лет работы Венециано, а случай лишь помог сделать первый шаг к открытию теории струн. Функция Эйлера, чудесным образом объяснившая сильное взаимодействие, обрела новую жизнь.

В конце концов, она попалось на глаза молодому американскому физику-теоретику Леонарду Сасскинду, который увидел, что в первую очередь формула описывала час­тицы, которые не имели внутренней структуры и могли вибрировать. Эти частицы вели себя так, что не могли быть просто точечными частицами. Сасскинд понял – формула описывает нить, которая подобна упругой резинке. Она могла не только растягиваться и сжиматься, но и колебаться, извиваться. Описав свое открытие, Сасскинд представил революционную идею струн.

К сожалению, подавляющее большинство его коллег встретили теорию весьма прохладно.

Стандартная модель

В то время общепринятая наука представляла частицы точками, а не струнами. В течение многих лет физики исследовали поведение субатомных частиц, сталкивая их на высоких скоростях и изучая последствия этих столкновений. Выяснилось, что Вселенная намного богаче, чем это можно было себе представить. Это был настоящий «демографический взрыв» элементарных частиц. Аспиранты физических вузов бегали по коридорам с криками, что открыли новую частицу, – не хватало даже букв для их обозначения. Но, увы, в «родильном доме» новых частиц ученые так и не смогли отыскать ответ на вопрос – зачем их так много и откуда они берутся?

Это подтолкнуло физиков к необычному и потрясающему предсказанию – они поняли, что силы, действующие в природе, также можно объяснить с помощью частиц. То есть существуют частицы материи, а есть частицы-переносчики взаимодействий. Таковым, например, является фотон – частица света. Чем больше этих частиц-перенос­чиков – тех же фотонов, которыми обмениваются частицы материи, тем ярче свет. Ученые предсказывали, что именно этот обмен частицами-переносчиками – есть не что иное, как то, что мы воспринимаем как силу. Это подтвердилось экспериментами. Так физикам удалось приблизиться к мечте Эйнштейна по объединению сил.

Ученые считают, что если мы перенесемся к моменту сразу после Большого взрыва, когда Вселенная была на триллионы градусов горячее, частицы-переносчики электромагнетизма и слабого взаимодействия станут неразличимы и объединятся в одну-е­дин­ственную силу, называемую электрослабой. А если вернуться во времени еще дальше, то электрослабое взаимодействие соединилось бы с сильным в одну суммарную «суперсилу».

Несмотря на то, что все это еще ждет своих доказательств, квантовая механика вдруг объяснила, как три из четырех сил взаимодействуют на субатомном уровне. Причем объяснила красиво и непротиворечиво. Эта стройная картина взаимодействий, в конечном счете, получила название Стандартной модели. Но, увы, и в этой совершенной теории была одна большая проблема – она не включала в себя самую известную силу макроуровня – гравитацию.

Взаимодействия между различными частицами в Стандартной модели
Гравитон

Для не успевшей «расцвести» теории струн наступила «осень», уж слишком много проблем она содержала с самого рождения. Например, выкладки теории предсказали существование частиц, которых, как точно установили вскоре, не существует. Это так называемый тахион – частица, которая движется в вакууме быстрее света. Помимо прочего выяснилось, что теория требует целых 10 измерений. Неудивительно, что это очень смущало физиков, ведь это очевидно больше, чем то, что мы видим.

К 1973 году только несколько молодых физиков все еще боролись с загадочными выкладками теории струн. Одним из них был американский физик-теоретик Джон Шварц. В течение четырех лет Шварц пытался приручить непослушные уравнения, но без толку. Помимо других проблем, одно из этих уравнений упорно описывало таинственную частицу, которая не имела массы и не наблюдалась в природе.

Ученый уже решил забросить свое гиблое дело, и тут его осенило – может быть, уравнения теории струн описывают, в том числе, и гравитацию? Впрочем, это подразумевало пересмотр размеров главных «героев» теории – струн. Предположив, что струны в миллиарды и миллиарды раз меньше атома, «струнщики» превратили недостаток теории в ее достоинство. Таинственная частица, от которой Джон Шварц так настойчиво пытался избавиться, теперь выступала в качестве гравитона – частицы, которую долго искали и которая позволила бы перенести гравитацию на квантовый уровень. Именно так теория струн дополнила пазл гравитацией, отсутствующей в Стандартной модели. Но, увы, даже на это открытие научное сообщество никак не отреагировало. Теория струн оставалась на грани выживания. Но Шварца это не остановило. Присоединиться к его поискам захотел только один ученый, готовый рискнуть своей карьерой ради таинственных струн – Майкл Грин.

Субатомные матрешки

Несмотря ни на что, в начале 1980?х годов теория струн все еще имела неразрешимые противоречия, называемые в науке аномалиями. Шварц и Грин принялись за их устранение. И усилия их не прошли даром: ученые сумели устранить некоторые противоречия теории. Каково же было изумление этих двоих, уже привыкших к тому, что их теорию пропускают мимо ушей, когда реакция ученого сообщес­тва взорвала научный мир. Меньше чем за год число струнных теоретиков подпрыгнуло до сотен человек. Именно тогда теорию струн наградили титулом Теории Всего. Новая теория, казалось, способна описать все составляющие мироздания. И вот эти составляющие.

Каждый атом, как известно, состоит из еще меньших частиц – электронов, которые кружатся вокруг ядра, состоящего из протонов и нейтронов. Протоны и нейтроны, в свою очередь, состоят из еще меньших частиц – кварков. Но теория струн утверждает, что на кварках дело не заканчивается. Кварки состоят из крошечных извивающихся нитей энергии, которые напоминают струны. Каждая из таких струн невообразимо мала.

Мала настолько, что если бы атом был увеличен до размеров Солнечной системы, струна была бы размером с дерево. Так же, как различные колебания струны виолончели создают то, что мы слышим, как разные музыкальные ноты, различные способы (моды) вибрации струны придают частицам их уникальные свойства – массу, заряд и прочее. Знаете, чем, условно говоря, отличаются протоны в кончике вашего ногтя от пока не открытого гравитона? Только набором крошечных струн, которые их составляют, и тем, как эти струны колеблются.

Конечно, все это более чем удивительно. Еще со времен Древней Греции физики привыкли к тому, что все в этом мире состоит из чего-то вроде шаров, крошечных частиц. И вот, не успев привыкнуть к алогичному поведению этих шаров, вытекающему из квантовой механики, им предлагается вовсе оставить парадигму и оперировать какими-то обрезками спагетти...

Пятое измерение

Хотя многие ученые называют теорию струн триумфом математики, некоторые проблемы у нее все же остаются – прежде всего, отсутствие какой-либо возможности в ближайшее время проверить ее экспериментально. Ни один инструмент в мире, ни существующий, ни способный появиться в перспективе, «увидеть» струны неспособен. Поэтому некоторые ученые, кстати, даже задаются вопросом: теория струн – это теория физики или философии?.. Правда, видеть струны «воочию» вовсе не обязательно. Для доказательства теории струн требуется, скорее, другое – то, что звучит как научная фантастика – подтверждение существования дополнительных измерений пространства.

О чем идет речь? Все мы привыкли к трем измерениям пространства и одному – времени. Но теория струн предсказывает наличие и других – дополнительных – измерений. Но начнем по порядку.

На самом деле, идея о существовании других измерений возникла почти сто лет назад. Пришла она в голову никому не известному тогда немецкому математику Теодору Калуца в 1919 году. Он предположил возможность наличия в нашей Вселенной еще одного измерения, которое мы не видим. Об этой идее узнал Альберт Эйнштейн, и сначала она ему очень понравилась. Позже, однако, он засомневался в ее правильности, и задержал публикацию Калуцы на целых два года. В конечном счете, правда, статья все-таки была опубликована, а дополнительное измерение стало своеобразным увлечением гения физики.

Как известно, Эйнштейн показал, что гравитация есть не что иное, как деформация измерений пространства-времени. Калуца предположил, что электромагнетизм тоже может быть рябью. Почему же мы ее не наблюдаем? Калуца нашел ответ на этот вопрос – рябь электромагнетизма может существовать в дополнительном, скрытом измерении. Но где оно?

Ответ на этот вопрос дал шведский физик Оскар Клейн, который предположил, что пятое измерение Калуцы свернуто в миллиарды раз сильнее, чем размеры одного атома, поэтому мы и не можем его видеть. Идея о существовании этого крошечного измерения, которое находится повсюду вокруг нас, и лежит в основе теории струн.

Одна из предполагаемых форм дополнительных закрученных измерений. Внутри каждой из таких форм вибрирует и движется струна – основной компонент Вселенной. Каждая форма шестимерна – по числу шести дополнительных измерений

Десять измерений

Но на самом деле уравнения теории струн требуют даже не одного, а шести дополнительных измерений (итого, с известными нам четырьмя, их получается ровно 10). Все они имеют очень закрученную и искривленную сложную форму. И все – невообразимо малы.

Каким же образом эти крошечные измерения могут оказывать влияние на наш большой мир? Согласно теории струн, решающее: для нее все определяет форма. Когда на саксофоне вы нажимаете разные клавиши, вы получаете и разные звуки. Это происходит потому, что при нажатии той или иной клавиши или их комбинации, вы меняете форму пространства в музыкальном инструменте, где циркулирует воздух. Благодаря этому и рождаются разные звуки.

Теория струн полагает, что дополнительные искривленные и закрученные измерения пространства проявляются похожим образом. Формы этих дополнительных измерений сложны и разнообразны, и каждое заставляет вибрировать струну, находящуюся внутри таких измерений, по-разному именно благодаря своим формам. Ведь если предположить, например, что одна струна вибрирует внутри кувшина, а другая – внутри изогнутого почтового рожка, это будут совершенно разные вибрации. Впрочем, если верить теории струн, на деле формы дополнительных измерений выглядят куда сложнее кувшина.

Как устроен мир

Науке сегодня известен набор чисел, которые являются фундаментальными постоянными Вселенной. Именно они определяют свойства и характеристики всего вокруг нас. Среди таких констант, например, заряд электрона, гравитационная постоянная, скорость света в вакууме... И если мы изменим эти числа даже в незначительное число раз – последствия будут катастрофическими. Предположим, мы увеличили силу электромагнитного взаимодействия. Что же произошло? Мы можем вдруг обнаружить, что ионы стали сильнее отталкиваться друг от друга, и термоядерный синтез, который заставляет звезды светить и излучать тепло, вдруг дал сбой. Все звезды погаснут.

Но причем здесь теория струн с ее дополнительными измерениями? Дело в том, что, согласно ей, именно дополнительные измерения определяют точное значение фундаментальных констант. Одни формы измерений заставляют одну струну вибрировать определенным образом, и порождают то, что мы видим, как фотон. В других формах струны вибрируют по-другому, и порождают электрон. Воистину бог кроется в «мелочах» – именно эти крошечные формы определяют все основополагающие константы этого мира.

Теория суперструн

В середине 1980-х годов теория струн приобрела величественный и стройный вид, но внутри этого монумента царила путаница. Всего за несколько лет возникло целых пять версий теории струн. И хотя каждая из них построена на струнах и дополнительных измерениях (все пять версий объединены в общую теорию суперструн – NS), в деталях эти версии расходились значительно.

Так, в одних версиях струны имели открытые концы, в других – напоминали кольца. А в некоторых вариантах теория даже требовала не 10, а целых 26 измерений. Парадокс в том, что все пять версий на сегодняшний день можно назвать одинаково верными. Но какая из них действительно описывает нашу Вселенную? Это очередная загадка теории струн. Именно поэтому многие физики снова махнули рукой на «сумасбродную» теорию.

Но самая главная проблема струн, как уже было сказано, в невозможности (по крайней мере, пока) доказать их наличие экспериментальным путем.

Некоторые ученые, однако, все же поговаривают, что на следующем поколении ускорителей есть очень минимальная, но все же возможность проверить гипотезу о дополнительных измерениях. Хотя большинство, конечно, уверено, что если это и возможно, то произойти это, увы, должно еще очень нескоро – как минимум через десятилетия, как максимум – даже через сотню лет.

Различные версии теории струн сегодня рассматриваются в качестве главных претендентов на звание всеобъемлющей универсальной теории, объясняющей природу всего сущего. А это - своего рода Священный Грааль физиков-теоретиков, занимающихся теорией элементарных частиц и космологии. Универсальная теория (она же теория всего сущего) содержит всего несколько уравнений, которые объединяют в себе всю совокупность человеческих знаний о характере взаимодействий и свойствах фундаментальных элементов материи, из которых построена Вселенная.

Сегодня теорию струн удалось объединить с концепцией суперсимметрии, в результате чего родилась теория суперструн, и на сегодняшний день это максимум того, что удалось добиться в плане объединения теории всех четырех основных взаимодействий (действующих в природе сил). Сама по себе теория суперсимметрии уже построена на основе априорной современной концепции, согласно которой любое дистанционное (полевое) взаимодействие обусловлено обменом частицами-носителями взаимодействия соответствующего рода между взаимодействующими частицами (см. Стандартная модель). Для наглядности взаимодействующие частицы можно считать «кирпичиками» мироздания, а частицы-носители - цементом.

Теория струн - направление математической физики, изучающее динамику не точечных частиц, как большинство разделов физики, а одномерных протяжённых объектов, т.е. струн.
В рамках стандартной модели в роли кирпичиков выступают кварки, а в роли носителей взаимодействия - калибровочные бозоны, которыми эти кварки обмениваются между собой. Теория же суперсимметрии идет еще дальше и утверждает, что и сами кварки и лептоны не фундаментальны: все они состоят из еще более тяжелых и не открытых экспериментально структур (кирпичиков) материи, скрепленных еще более прочным «цементом» сверхэнергетичных частиц-носителей взаимодействий, нежели кварки в составе адронов и бозонов.

Естественно, в лабораторных условиях ни одно из предсказаний теории суперсимметрии до сих пор не проверено, однако гипотетические скрытые компоненты материального мира уже имеют названия - например, сэлектрон (суперсимметричный напарник электрона), скварк и т. д. Существование этих частиц, однако, теориями такого рода предсказывается однозначно.

Картину Вселенной, предлагаемую этими теориями, однако, достаточно легко представить себе наглядно. В масштабах порядка 10Е–35 м, то есть на 20 порядков меньше диаметра того же протона, в состав которого входят три связанных кварка, структура материи отличается от привычной нам даже на уровне элементарных частиц. На столь малых расстояниях (и при столь высоких энергиях взаимодействий, что это и представить немыслимо) материя превращается в серию полевых стоячих волн, подобных тем, что возбуждаются в струнах музыкальных инструментов. Подобно гитарной струне, в такой струне могут возбуждаться, помимо основного тона, множество обертонов или гармоник. Каждой гармонике соответствует собственное энергетическое состояние. Согласно принципу относительности (см. Теория относительности), энергия и масса эквивалентны, а значит, чем выше частота гармонической волновой вибрации струны, тем выше его энергия, и тем выше масса наблюдаемой частицы.

Однако, если стоячую волну в гитарной струне представить себе наглядно достаточно просто, стоячие волны, предлагаемые теорией суперструн наглядному представлению поддаются с трудом - дело в том, что колебания суперструн происходят в пространстве, имеющем 11 измерений. Мы привыкли к четырехмерному пространству, которое содержит три пространственных и одно временное измерение (влево-вправо, вверх-вниз, вперед-назад, прошлое-будущее). В пространстве суперструн всё обстоит гораздо сложнее (см. вставку). Физики-теоретики обходят скользкую проблему «лишних» пространственных измерений, утверждая, что они «скрадываются» (или, научным языком выражаясь, «компактифицируются») и потому не наблюдаются при обычных энергиях.

Совсем уже недавно теория струн получила дальнейшее развитие в виде теории многомерных мембран - по сути, это те же струны, но плоские. Как походя пошутил кто-то из ее авторов, мембраны отличаются от струн примерно тем же, чем лапша отличается от вермишели.

Вот, пожалуй, и всё, что можно вкратце рассказать об одной из теорий, не без основания претендующих на сегодняшний день на звание универсальной теории Великого объединения всех силовых взаимодействий. Увы, и эта теория небезгрешна. Прежде всего, она до сих пор не приведена к строгому математическому виду по причине недостаточности математического аппарата для ее приведения в строгое внутреннее соответствие. Прошло уже 20 лет, как эта теория появилась на свет, а непротиворечиво согласовать одни ее аспекты и версии с другими так никому и не удалось. Еще неприятнее то, что никто из теоретиков, предлагающих теорию струн (и, тем более суперструн) до сих пор не предложил ни одного опыта, на котором эти теории можно было бы проверить лабораторно. Увы, боюсь, что до тех пор, пока они этого не сделают, вся их работа так и останется причудливой игрой фантазии и упражнениями в постижении эзотерических знаний за пределами основного русла естествознания.

Изучение свойств чёрных дыр

В 1996 г. струнные теоретики Эндрю Строминджер и Кумрун Вафа, опираясь на более ранние результаты Сасскинда и Сена, опубликовали работу «Микроскопическая природа энтропии Бекенштейна и Хокинга». В этой работе Строминджеру и Вафе удалось использовать теорию струн для нахождения микроскопических компонентов определенного класса чёрных дыр, а также для точного вычисления вкладов этих компонентов в энтропию. Работа была основана на применении нового метода, частично выходящего за рамки теории возмущений, которую использовали в 1980-х и в начале 1990-х гг. Результат работы в точности совпадал с предсказаниями Бекенштейна и Хокинга, сделанными более чем за двадцать лет до этого.

Реальным процессам образования чёрных дыр Строминджер и Вафа противопоставили конструктивный подход. Они изменили точку зрения на образование чёрных дыр, показав, что их можно конструировать путем кропотливой сборки в один механизм точного набора бран, открытых во время второй суперструнной революции.

Имея в руках все рычаги управления микроскопической конструкцией чёрной дыры, Строминджер и Вафа смогли вычислить число перестановок микроскопических компонентов чёрной дыры, при которых общие наблюдаемые характеристики, например масса и заряд, остаются неизменными. После этого они сравнили полученное число с площадью горизонта событий чёрной дыры - энтропией, предсказанной Бекенштейном и Хокингом, - и получили идеальное согласие. По крайней мере, для класса экстремальных чёрных дыр Строминджеру и Вафе удалось найти приложение теории струн для анализа микроскопических компонентов и точного вычисления соответствующей энтропии. Проблема, стоявшая перед физиками в течение четверти века, была решена.

Для многих теоретиков это открытие было важным и убедительным аргументом в поддержку теории струн. Разработка теории струн до сих пор остается слишком грубой для прямого и точного сравнения с экспериментальными результатами, например, с результатами измерений масс кварка или электрона. Теория струн, тем не менее, дает первое фундаментальное обоснование давно открытого свойства чёрных дыр, невозможность объяснения которого многие годы тормозила исследования физиков, работавших с традиционными теориями. Даже Шелдон Глэшоу, Нобелевский лауреат по физике и убеждённый противник теории струн в 1980-е гг., признался в интервью в 1997 г., что «когда струнные теоретики говорят о чёрных дырах, речь идёт едва ли не о наблюдаемых явлениях, и это впечатляет».

Струнная космология

Существует три основных пункта, в которых теория струн модифицирует стандартную космологическую модель. Во-первых, в духе современных исследований, всё более проясняющих ситуацию, из теории струн следует, что Вселенная должна иметь минимально допустимый размер. Этот вывод меняет представление о структуре Вселенной непосредственно в момент Большого взрыва, для которого в стандартной модели получается нулевой размер Вселенной. Во-вторых, понятие T-дуальности, то есть дуальности малых и больших радиусов (в его тесной связи с существованием минимального размера) в теории струн, имеет значение и в космологии. В-третьих, число пространственно-временных измерений в теории струн больше четырёх, поэтому космология должна описывать эволюцию всех этих измерений.

Модель Бранденберга и Вафы

В конце 1980-х гг. Роберт Бранденбергер и Кумрун Вафа сделали первые важные шаги к пониманию того, к каким изменениям в следствиях из стандартной космологической модели приведет использование теории струн. Они пришли к двум важным выводам. Во-первых, по мере движения назад к моменту Большого взрыва температура продолжает расти до момента, когда размеры Вселенной по всем направлениям сравняются с планковской длиной. В этот момент температура достигнет максимума и начнёт уменьшаться. На интуитивном уровне нетрудно понять причину этого явления. Предположим для простоты (следуя Бранденбергеру и Вафе), что все пространственные измерения Вселенной циклические. При движении назад во времени радиус каждой окружности сокращается, а температура Вселенной увеличивается. Из теории струн мы знаем, что сокращение радиусов сначала до и затем ниже значений планковской длины физически эквивалентно уменьшению радиусов до планковской длины, сменяющемуся затем их последующим увеличением. Поскольку температура при расширении Вселенной падает, то безрезультатные попытки сжать Вселенную до размеров, меньших планковской длины, приведут к прекращению роста температуры и её дальнейшему снижению.

В результате Бранденбергер и Вафа пришли к следующей космологической картине: сначала все пространственные измерения в теории струн плотно свернуты до минимальных размеров порядка планковской длины. Температура и энергия высоки, но не бесконечны: парадоксы начальной точки нулевого размера в теории струн решены. В начальный момент существования Вселенной все пространственные измерения теории струн совершенно равноправны и полностью симметричны: все они свернуты в многомерный комок планковских размеров. Далее, согласно Бранденбергеру и Вафе, Вселенная проходит первую стадию понижения симметрии, когда в планковский момент времени три пространственных измерения отбираются для последующего расширения, а остальные сохраняют исходный планковский размер. Затем эти три измерения отождествляются с измерениями в сценарии инфляционной космологии и в процессе эволюции принимают наблюдаемую теперь форму.

Модель Венециано и Гасперини

После работы Бранденбергера и Вафы физики непрерывно продвигаются вперёд к пониманию струнной космологии. В числе тех, кто идет во главе этих исследований - Габриэле Венециано и его коллега Маурицио Гасперини из Туринского университета. Эти учёные представили свой вариант струнной космологии, который в ряде мест соприкасается с описанным выше сценарием, но в других местах принципиально отличается от него. Как Бранденбергер и Вафа, для исключения бесконечной температуры и плотности энергии, которые возникают в стандартной и инфляционной модели, они опирались на существование минимальной длины в теории струн. Однако вместо вывода о том, что в силу этого свойства Вселенная рождается из комка планковских размеров, Гасперини и Венециано предположили, что существовала доисторическая вселенная, возникшая задолго до момента, который называется нулевой точкой, и породившая этот космический «эмбрион» планковских размеров.

Исходное состояние Вселенной в таком сценарии и в модели Большого взрыва очень сильно различаются. Согласно Гасперини и Венециано, Вселенная не являлась раскаленным и плотно скрученным клубком измерений, а была холодной и имела бесконечную протяженность. Затем, как следует из уравнений теории струн, во Вселенную вторглась нестабильность, и все её точки стали, как и в эпоху инфляции по Гуту, стремительно разбегаться в стороны.

Гасперини и Венециано показали, что из-за этого пространство становилось всё более искривлённым и в результате произошел резкий скачок температуры и плотности энергии. Прошло немного времени, и трёхмерная область миллиметровых размеров внутри этих бескрайних просторов преобразилась в раскалённое и плотное пятно, тождественное пятну, которое образуется при инфляционном расширении по Гуту. Затем все пошло по стандартному сценарию космологии Большого взрыва, и расширяющееся пятно превратилось в наблюдаемую Вселенную.

Поскольку в эпоху до Большого взрыва происходило своё инфляционное расширение, решение парадокса горизонта, предложенное Гутом, оказывается автоматически встроенным в этот космологический сценарий. По выражению Венециано (в интервью 1998 г.), «теория струн преподносит нам как на блюдечке вариант инфляционной космологии».

Изучение струнной космологии быстро становится областью активных и продуктивных исследований. Например, сценарий эволюции до Большого взрыва уже не раз был поводом горячих споров, а его место в будущей космологической формулировке далеко не очевидно. Однако нет сомнений, что эта космологическая формулировка будет твёрдо опираться на понимание физиками результатов, открытых во время второй суперструнной революции. Например, до сих пор не ясны космологические следствия существования многомерных мембран. Иными словами, как изменитcя представление о первых моментах существования Вселенной в результате анализа законченной М-теории? Этот вопрос интенсивно исследуется.

Это уже четвертая по счету тема. Просьба добровольцам тоже не забывать, какие темы они высказали желание осветить или может кто-то только сейчас выбрал какую то тему из списка. С меня репост и продвижение по соцсетям. А теперь наша тема: «теория струн»

Вы, наверное, слышали о том, что самая популярная научная теория нашего времени - теория струн, - подразумевает существование гораздо большего количества измерений, чем подсказывает нам здравый смысл.

Самая большая проблема у теоретических физиков - как объединить все фундаментальные взаимодействия (гравитационное, электромагнитное, слабое и сильное) в единую теорию. Теория суперструн как раз претендует на роль Теории Всего.

Но оказалось, что самое удобное количество измерений, необходимое для работы этой теории - целых десять (девять из которых - пространственные, и одно - временное)! Если измерений больше или меньше, математические уравнения дают иррациональные результаты, уходящие в бесконечность - сингулярность.

Следующий этап развития теории суперструн - М-теория - насчитала уже одиннадцать размерностей. А ещё один её вариант - F-теория - все двенадцать. И это вовсе не усложнение. F-теория описывает 12-мерное пространство более простыми уравнениями, чем М-теория - 11-мерное.

Конечно, теоретическая физика не зря называется теоретической. Все её достижения существуют пока что только на бумаге. Так, чтобы объяснить почему же мы можем перемещаться только в трёхмерном пространстве, учёные заговорили о том, как несчастным остальным измерениям пришлось скукожиться в компактные сферы на квантовом уровне. Если быть точными, то не в сферы, а в пространства Калаби-Яу. Это такие трёхмерные фигурки, внутри которых свой собственный мир с собственной размерностью. Двухмерная проекция подобный многообразий выглядит приблизительно так:


Таких фигурок известно более 470 миллионов. Которая из них соответствует нашей действительности, в данный момент вычисляется. Нелегко это - быть теоретическим физиком.

Да, это кажется немного притянутым за уши. Но может, именно этим и объясняется, почему квантовый мир так отличается от воспринимаемого нами.

Давайте немного окунемся в историю

В 1968 г. молодой физик-теоретик Габриэле Венециано корпел над осмыслением многочисленных экспериментально наблюдаемых характеристик сильного ядерного взаимодействия. Венециано, который в то время работал в ЦЕРНе, Европейской ускорительной лаборатории, находящейся в Женеве (Швейцария), трудился над этой проблемой в течение нескольких лет, пока однажды его не осенила блестящая догадка. К большому своему удивлению он понял, что экзотическая математическая формула, придуманная примерно за двести лет до этого знаменитым швейцарским математиком Леонардом Эйлером в чисто математических целях – так называемая бета-функция Эйлера, – похоже, способна описать одним махом все многочисленные свойства частиц, участвующих в сильном ядерном взаимодействии. Подмеченное Венециано свойство давало мощное математическое описание многим особенностям сильного взаимодействия; оно вызвало шквал работ, в которых бета-функция и ее различные обобщения использовались для описания огромных массивов данных, накопленных при изучении столкновений частиц по всему миру. Однако в определенном смысле наблюдение Венециано было неполным. Подобно зазубренной наизусть формуле, используемой студентом, который не понимает ее смысла или значения, бета-функция Эйлера работала, но никто не понимал почему. Это была формула, которая требовала объяснения.

Габриеле Венециано (Gabriele Veneziano)

Положение дел изменилось в 1970 г., когда Йохиро Намбу из Чикагского университета, Хольгер Нильсен из института Нильса Бора и Леонард Сасскинд из Станфордского университета смогли выявить физический смысл, скрывавшийся за формулой Эйлера. Эти физики показали, что при представлении элементарных частиц маленькими колеблющимися одномерными струнами сильное взаимодействие этих частиц в точности описывается с помощью функции Эйлера. Если отрезки струн являются достаточно малыми, рассуждали эти исследователи, они по-прежнему будут выглядеть как точечные частицы, и, следовательно, не будут противоречить результатам экспериментальных наблюдений. Хотя эта теория была простой и интуитивно привлекательной, вскоре было показано, что описание сильного взаимодействия с помощью струн содержит изъяны. В начале 1970-х гг. специалисты по физике высоких энергий смогли глубже заглянуть в субатомный мир и показали, что ряд предсказаний модели, основанной на использовании струн, находится в прямом противоречии с результатами наблюдений. В то же время параллельно шло развитие квантово-полевой теории – квантовой хромодинамики, – в которой использовалась точечная модель частиц. Успехи этой теории в описании сильного взаимодействия привели к отказу от теории струн.
Большинство специалистов по физике элементарных частиц полагали, что теория струн навсегда отправлена в мусорный ящик, однако ряд исследователей сохранили ей верность. Шварц, например, ощущал, что «математическая структура теории струн столь прекрасна и имеет столько поразительных свойств, что, несомненно, должна указывать на что-то более глубокое» 2 ). Одна из проблем, с которыми физики сталкивались в теории струн, состояла в том, что она, как казалось, предоставляла слишком богатый выбор, что сбивало с толку. Некоторые конфигурации колеблющихся струн в этой теории имели свойства, которые напоминали свойства глюонов, что давало основание действительно считать ее теорией сильного взаимодействия. Однако помимо этого в ней содержались дополнительные частицы-переносчики взаимодействия, не имевшие никакого отношения к экспериментальным проявлениям сильного взаимодействия. В 1974 г. Шварц и Джоэль Шерк из французской Высшей технической школы сделали смелое предположение, которое превратило этот кажущийся недостаток в достоинство. Изучив странные моды колебаний струн, напоминающие частицы-переносчики, они поняли, что эти свойства удивительно точно совпадают с предполагаемыми свойствами гипотетической частицы-переносчика гравитационного взаимодействия – гравитона. Хотя эти «мельчайшие частицы» гравитационного взаимодействия до сих пор так и не удалось обнаружить, теоретики могут уверенно предсказать некоторые фундаментальные свойства, которыми должны обладать эти частицы. Шерк и Шварц обнаружили, что эти характеристики в точности реализуются для некоторых мод колебаний. Основываясь на этом, они предположили, что первое пришествие теории струн закончилось неудачей из-за того, что физики чрезмерно сузили область ее применения. Шерк и Шварц объявили, что теория струн – это не просто теория сильного взаимодействия, это квантовая теория, которая, помимо всего прочего, включает гравитацию).

Физическое сообщество отреагировало на это предположение весьма сдержанно. В действительности, по воспоминаниям Шварца, «наша работа была проигнорирована всеми» 4 ). Пути прогресса уже были основательно захламлены многочисленными провалившимися попытками объединить гравитацию и квантовую механику. Теория струн потерпела неудачу в своей первоначальной попытке описать сильное взаимодействие, и многим казалось бессмысленным пытаться использовать ее для достижения еще более великих целей. Последующие, более детальные исследования конца 1970-х и начала 1980-х гг. показали, что между теорией струн и квантовой механикой возникают свои, хотя и меньшие по масштабам, противоречия. Создавалось впечатление, что гравитационная сила вновь смогла устоять перед попыткой встроить ее в описание мироздания на микроскопическом уровне.
Так было до 1984 г. В своей статье, сыгравшей поворотную роль и подытожившей более чем десятилетние интенсивные исследования, которые по большей части были проигнорированы или отвергнуты большинством физиков, Грин и Шварц установили, что незначительное противоречие с квантовой теорией, которым страдала теория струн, может быть разрешено. Более того, они показали, что полученная в результате теория обладает достаточной широтой, чтобы охватить все четыре вида взаимодействий и все виды материи. Весть об этом результате распространилась по всему физическому сообществу: сотни специалистов по физике элементарных частиц прекращали работу над своими проектами, чтобы принять участие в штурме, который казался последней теоретической битвой в многовековом наступлении на глубочайшие основы мироздания.
Весть об успехе Грина и Шварца, в конце концов, дошла даже до аспирантов первого года обучения, и на смену прежнему унынию пришло возбуждающее ощущение причастности к поворотному моменту в истории физики. Многие из нас засиживались глубоко за полночь, штудируя увесистые фолианты по теоретической физике и абстрактной математике, знание которых необходимо для понимания теории струн.

Если верить учёным, то мы сами и всё вокруг нас состоит из бесконечного множества вот таких загадочных свернутых микрообъектов.
Период с 1984 по 1986 гг. теперь известен как «первая революция в теории суперструн». В течение этого периода физиками всего мира было написано более тысячи статей по теории струн. Эти работы окончательно продемонстрировали, что многочисленные свойства стандартной модели, открытые в течение десятилетий кропотливых исследований, естественным образом вытекают из величественной системы теории струн. Как заметил Майкл Грин, «момент, когда вы знакомитесь с теорией струн и осознаете, что почти все основные достижения физики последнего столетия следуют – и следуют с такой элегантностью – из столь простой отправной точки, ясно демонстрирует вам всю невероятную мощь этой теории» 5 . Более того, для многих из этих свойств, как мы увидим ниже, теория струн дает гораздо более полное и удовлетворительное описание, чем стандартная модель. Эти достижения убедили многих физиков, что теория струн способна выполнить свои обещания и стать окончательной объединяющей теорией.

Двумерная проекция трехмерного многообразия Калаби-Яу. Эта проекция дает представление о том, как сложно устроены дополнительные измерения

Однако на этом пути занимавшиеся теорией струн физики снова и снова натыкались на серьезные препятствия. В теоретической физике часто приходится иметь дело с уравнениями, которые либо слишком сложны для понимания, либо с трудом поддаются решению. Обычно в такой ситуации физики не пасуют и пытаются получить приближенное решение этих уравнений. Положение дел в теории струн намного сложнее. Даже сам вывод уравнений оказался столь сложным, что до сих пор удалось получить лишь их приближенный вид. Таким образом, физики, работающие в теории струн, оказались в ситуации, когда им приходится искать приближенные решения приближенных уравнений. После нескольких лет поражающего воображение прогресса, достигнутого в течение первой революции теории суперструн, физики столкнулись с тем, что используемые приближенные уравнения оказались неспособными дать правильный ответ на ряд важных вопросов, тормозя тем самым дальнейшее развитие исследований. Не имея конкретных идей по выходу за рамки этих приближенных методов, многие физики, работавшие в области теории струн, испытали растущее чувство разочарования и вернулись к своим прежним исследованиям. Для тех, кто остался, конец 1980-х и начало 1990-х гг. были периодом испытаний.

Красота и потенциальная мощь теории струн манили исследователей подобно золотому сокровищу, надежно запертому в сейфе, видеть которое можно лишь через крошечный глазок, но ни у кого не было ключа, который выпустил бы эти дремлющие силы на свободу. Долгий период «засухи» время от времени прерывался важными открытиями, но всем было ясно, что требуются новые методы, которые позволили бы выйти за рамки уже известных приближенных решений.

Конец застою положил захватывающий дух доклад, сделанным Эдвардом Виттеном в 1995 г. на конференции по теории струн в университете Южной Калифорнии – доклад, который ошеломил аудиторию, до отказа заполненную ведущими физиками мира. В нем он обнародовал план следующего этапа исследований, положив тем самым начало «второй революции в теории суперструн». Сейчас специалисты по теории струн энергично работают над новыми методами, которые обещают преодолеть встреченные препятствия.

За широкую популяризацию ТС человечеству стоило бы поставить памятник профессору Колумбийского университета (Columbia University) Брайану Грину (Brian Greene). Его вышедшая в 1999 году книга «Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории» стала бестселлером и получила Пулитцеровскую премию. Труд учёного лёг в основу научно-популярного мини-сериала с самим автором в роли ведущего – его фрагмент можно увидеть в конце материала (фото Amy Sussman/Columbia University).

кликабельно 1700 рх

А теперь давайте хоть немного попробуем понять суть этой теории.

Начнём с начала. Нулевое измерение - это точка. У неё нет размеров. Двигаться некуда, никаких координат для обозначения местонахождения в таком измерении не нужно.

Поставим рядом с первой точкой вторую и проведём через них линию. Вот вам и первое измерение. У одномерного объекта есть размер - длина, но нет ни ширины, ни глубины. Движение в рамках одномерного пространства очень ограничено, ведь возникшее на пути препятствие не обойдёшь. Чтобы определить местонахождение на этом отрезке, понадобится всего одна координата.

Поставим рядом с отрезком точку. Чтобы уместить оба эти объекта, нам потребуется уже двумерное пространство, обладающее длиной и шириной, то есть, площадью, однако без глубины, то есть, объёма. Расположение любой точки на этом поле определяется двумя координатами.

Третье измерение возникает, когда мы добавляем к этой система третью ось координат. Нам, жителям трёхмерной вселенной, очень легко это представить.

Попробуем вообразить, как видят мир жители двухмерного пространства. Например, вот эти два человечка:

Каждый из них увидит своего товарища вот таким:

А при вот таком раскладе:

Наши герои увидят друг друга такими:

Именно смена точки обзора позволяет нашим героям судить друг о друге как о двумерных объектах, а не одномерных отрезках.

А теперь представим, что некий объёмный объект движется в третьем измерении, которое пересекает этот двумерный мир. Для стороннего наблюдателя, это движение выразится в смене двумерных проекций объекта на плоскости, как у брокколи в аппарате МРТ:

Но для обитателя нашей Флатландии такая картинка непостижима! Он не в состоянии даже представить её себе. Для него каждая из двумерных проекций будет видеться одномерным отрезком с загадочно переменчивой длиной, возникающим в непредсказуемом месте и также непредсказуемо исчезающим. Попытки просчитать длину и место возникновения таких объектов с помощью законов физики двумерного пространства, обречены на провал.

Мы, обитатели трёхмерного мира, видим всё двумерным. Только перемещение предмета в пространстве позволяет нам почувствовать его объём. Любой многомерный объект мы увидим также двумерным, но он будет удивительным образом меняться в зависимости от нашего с ним взаиморасположения или времени.

С этой точки зрения интересно думать, например, про гравитацию. Все, наверное, видели, подобные картинки:

На них принято изображать, как гравитация искривляет пространство-время. Искривляет… куда? Точно ни в одно из знакомых нам измерений. А квантовое туннелирование, то есть, способность частицы исчезать в одном месте и появляться совсем в другом, причём за препятствием, сквозь которое в наших реалиях она не смогла бы проникнуть, не проделав в нём дыру? А чёрные дыры? А что, если все эти и другие загадки современной науки объясняются тем, что геометрия пространства совсем не такая, какой мы привыкли её воспринимать?

Тикают часики

Время добавляет к нашей Вселенной ещё одну координату. Для того, чтобы вечеринка состоялась, нужно знать не только в каком баре она произойдёт, но и точное время этого события.

Исходя из нашего восприятия, время - это не столько прямая, как луч. То есть, у него есть отправная точка, а движение осуществляется только в одном направлении - из прошлого в будущее. Причём реально только настоящее. Ни прошлое, ни будущее не существуют, как не существуют завтраки и ужины с точки зрения офисного клерка в обеденный перерыв.

Но теория относительности с этим не согласна. С её точки зрения, время - это полноценное измерение. Все события, которые существовали, существуют и будут существовать, одинаково реальны, как реален морской пляж, независимо от того, где именно мечты о шуме прибоя захватили нас врасплох. Наше восприятие - это всего лишь что-то вроде прожектора, который освещает на прямой времени какой-то отрезок. Человечество в его четвёртом измерении выглядит приблизительно так:

Но мы видим только проекцию, срез этого измерения в каждый отдельный момент времени. Да-да, как брокколи в аппарате МРТ.

До сих пор все теории работали с большим количеством пространственных измерений, а временное всегда было единственным. Но почему пространство допускает появление множественных размерностей для пространства, но время только одно? Пока учёные не смогут ответить на этот вопрос, гипотеза о двух или более временных пространствах будет казаться очень привлекательной всем философам и фантастам. Да и физикам, чего уж там. Скажем, американский астрофизик Ицхак Барс корнем всех бед с Теорией Всего видит как раз упущенное из виду второе временное измерение. В качестве умственного упражнения, попробуем представить себе мир с двумя временами.

Каждое измерение существует отдельно. Это выражается в том, что если мы меняем координаты объекта в одной размерности, координаты в других могут оставаться неизменными. Так, если вы движетесь по одной временной оси, которая пересекает другую под прямым углом, то в точке пересечения время вокруг остановится. На практике это будет выглядеть приблизительно так:

Всё, что Нео нужно было сделать - это разместить свою одномерную временную ось перпендикулярно временной оси пуль. Сущий пустяк, согласитесь. На самом деле всё намного сложнее.

Точное время во вселенной с двумя временными измерениями будет определяться двумя значениями. Слабо представить себе двумерное событие? То есть, такое, которое протяжённо одновременно по двум временным осям? Вполне вероятно, что в таком мире потребуются специалисты по составлению карты времени, как картографы составляют карты двухмерной поверхности земного шара.

Что ещё отличает двумерное пространство от одномерного? Возможность обходить препятствие, например. Это уже совсем за границами нашего разума. Житель одномерного мира не может представить себе как это - завернуть за угол. Да и что это такое - угол во времени? Кроме того, в двумерном пространстве можно путешествовать вперёд, назад, да хоть по диагонали. Я без понятия как это - пройти через время по диагонали. Я уж не говорю о том, что время лежит в основе многих физических законов, и как изменится физика Вселенной с появлением ещё одного временного измерения, невозможно представить. Но размышлять об этом так увлекательно!

Очень большая энциклопедия

Другие измерения ещё не открыты, и существуют только в математических моделях. Но можно попробовать представить их так.

Как мы выяснили раньше, мы видим трёхмерную проекцию четвёртого (временного) измерения Вселенной. Другими словами, каждый момент существования нашего мира - это точка (аналогично нулевому измерению) на отрезке времени от Большого взрыва до Конца Света.

Те из вас, кто читал про перемещения во времени, знают какую важную роль в них играет искривление пространственно-временного континуума. Вот это и есть пятое измерение - именно в нём «сгибается» четырёхмерное пространство-время, чтобы сблизить две какие-то точки на этой прямой. Без этого путешествие между этими точками было бы слишком длительным, или вообще невозможным. Грубо говоря, пятое измерение аналогично второму - оно перемещает «одномерную» линию пространства-времени в «двумерную» плоскость со всеми вытекающими в виде возможности завернуть за угол.

Наши особо философско-настроенные читатели чуть ранее, наверное, задумались о возможности свободной воли в условиях, где будущее уже существует, но пока ещё не известно. Наука на этот вопрос отвечает так: вероятности. Будущее - это не палка, а целый веник из возможных вариантов развития событий. Какой из них осуществится - узнаем когда доберёмся.

Каждая из вероятностей существует в виде «одномерного» отрезка на «плоскости» пятого измерения. Как быстрее всего перескочить из одного отрезка на другой? Правильно - согнуть эту плоскость, как лист бумаги. Куда согнуть? И снова правильно - в шестом измерении, которое придаёт всей этой сложной структуре «объём». И, таким образом, делает её, подобно трёхмерному пространству, «законченной», новой точкой.

Седьмое измерение - это новая прямая, которая состоит из шестимерных «точек». Что представляет собой какая-либо другая точка на этой прямой? Весь бесконечный набор вариантов развития событий в другой вселенной, образованной не в результате Большого Взрыва, а в других условиях, и действующей по другим законам. То есть, седьмое измерение - это бусы из параллельных миров. Восьмое измерение собирает эти «прямые» в одну «плоскость». А девятое можно сравнить с книгой, которая уместила в себя все «листы» восьмого измерения. Это совокупность всех историй всех вселенных со всеми законами физики и всеми начальными условиями. Снова точка.

Тут мы упираемся в предел. Чтобы представить себе десятое измерение, нам нужна прямая. А какая может быть другая точка на этой прямой, если девятое измерение уже покрывает всё, что только можно себе представить, и даже то, что и представить невозможно? Получается, девятое измерение - это не очередная отправная точка, а финальная - для нашей фантазии, во всяком случае.

Теория струн утверждает, что именно в десятом измерении совершают свои колебания струны - базовые частицы, из которых состоит всё. Если десятое измерение содержит себе все вселенные и все возможности, то струны существуют везде и всё время. В смысле, каждая струна существует и в нашей вселенной, и любой другой. В любой момент времени. Сразу. Круто, ага?

Физик, специалист по теории струн. Известен своими работами по зеркальной симметрии, связанными с топологией соответствующих многообразий Калаби-Яу. Широкой аудитории известен как автор научно популярных книг. Его «Элегантная Вселенная» была номинирована на Пулитцеровскую премию.

В сентябре 2013 года в Москву по приглашению Политехнического музея приехал Брайан Грин. Знаменитый физик, специалист по теории струн, профессор Колумбийского университета, он известен широкой публике в первую очередь как популяризатор науки и автор книги «Элегантная Вселенная». «Лента.ру» поговорила с Брайаном Грином о теории струн и недавних трудностях, с которыми столкнулась эта теория, а также о квантовой гравитации, амплитуэдре и социальном контроле.

Литература на русском языке: Kaku M., Thompson J.T. «Beyond Einstein: Superstrings and the quest for the final theory» и в чем заключался Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

В школе мы учили, что материя состоит из атомов, а атомы — из ядер, вокруг которых вращаются электроны. Примерно так же планеты вращаются вокруг солнца, поэтому это нам представить легко. Затем атом расщепили на элементарные частицы, и представить строение вселенной стало сложнее. В масштабе частиц действуют другие законы, и найти аналогию из жизни получается не всегда. Физика стала абстрактной и запутанной.

Но следующий шаг теоретической физики вернул ощущение реальности. Теория струн описала мир в понятиях, которые снова можно представить, а значит, легче понять и запомнить.

Тема все равно непростая, поэтому пойдем по порядку. Сначала разберем, в чем заключается теория, потом попробуем понять, зачем ее придумали. А на десерт — немного истории, у теории струн она короткая, но с двумя революциями.

Вселенная состоит из вибрирующих нитей энергии

До теории струн элементарные частицы считали точками — безразмерными формами с определенными свойствами. Теория струн описывает их как нити энергии, у которых один размер все же есть — длина. Эти одномерные нити назвали квантовыми струнами .

Теоретическая физика

Теоретическая физика
описывает мир с помощью математики, в отличие от экспериментальной физики. Первым физиком-теоретиком был Исаак Ньютон (1642-1727)

Ядро атома с электронами, элементарные частицы и квантовые струны глазами художника. Фрагмент документального фильма «Элегантная вселенная»

Квантовые струны очень малы, их длина порядка 10 -33 см. Это в сто миллионов миллиардов раз меньше протонов, которых сталкивают на Большом адронном коллайдере. Для подобных экспериментов со струнами пришлось бы построить ускоритель размером с галактику. Пока не нашли способ обнаружить струны, но благодаря математике мы можем предположить некоторые их свойства.

Квантовые струны бывают открытыми и закрытыми . У открытых концы свободные, у закрытых замыкаются друг на друга, образуя петли. Струны постоянно «открываются» и «закрываются», соединяются с другими струнами и распадаются на более мелкие.


Квантовые струны натянуты . Натяжение в пространстве происходит благодаря разнице энергии: у закрытых струн между сомкнутыми концами, у открытых — между концами струн и пустотой. Эту пустоту физики называют двумерными гранями измерений, или бранами — от слова мембрана.

сантиметров — минимально возможный размер объекта во вселенной. Его называют планковской длиной

Мы состоим из квантовых струн

Квантовые струны вибрируют . Это колебания, похожие на колебания струн балалайки, с равномерными волнами и целым числом минимумов и максимумов. При вибрации квантовая струна не издает звука, в масштабах элементарных частиц нечему передавать звуковые колебания. Она сама становится частицей: вибрирует с одной частотой — кварк, с другой — глюон, с третьей — фотон. Поэтому квантовая струна — это единый строительный элемент, «кирпичик» вселенной.

Вселенную принято изображать как космос и звезды, но это и наша планета, и мы с вами, и текст на экране, и ягоды в лесу.

Схема струнных колебаний. При любой частоте все волны одинаковые, их количество целое: одна, две и три


Подмосковье, 2016 год. Земляники много — больше только комаров. Они тоже из струн.


А космос — он где-то там. Вернемся к космосу

Итак, в основе вселенной — квантовые струны, одномерные нити энергии, которые вибрируют, меняют размер и форму и обмениваются энергией с другими струнами. Но это не все.

Квантовые струны перемещаются в пространстве . И пространство в масштабах струн — это самая любопытная часть теории.

Квантовые струны перемещаются в 11 измерениях

Теодор Калуца
(1885-1954)

Все началось с Альберта Эйнштейна. Его открытия показали, что время относительно, и объединили его с пространством в единый простанственно-временной континуум. Работы Эйнштейна объяснили гравитацию, движение планет и возникновение черных дыр. Кроме того, они вдохновили современников на новые открытия.

Уравнения Общей теории относительности Эйнштейн опуликовал в 1915-16 годах, а уже в 1919-м польский математик Теодор Калуца попытался применить его расчеты к теории электромагнитного поля. Но возник вопрос: если эйнштейновская гравитация искривляет четыре измерения пространства-времени, что искривляют электромагнитные силы? Вера в Эйнштейна была сильна, и Калуца не усомнился в том, что его уравнения опишут электромагнетизм. Вместо этого он предположил, что электромагнитные силы искривляют дополнительное, пятое измерение. Эйнштейну идея пришлась по душе, но проверки экспериментами теория не прошла и была забыта — до 1960-х.

Альберт Эйнштейн (1879-1955)

Теодор Калуца
(1885-1954)

Теодор Калуца
(1885-1954)

Альберт Эйнштейн
(1879-1955)

Первые уравнения теории струн давали странные результаты. В них появлялись тахионы — частицы с отрицательной массой, которые двигались быстрее скорости света. Здесь и пригодилась идея Калуцы о многомерности вселенной. Правда, пяти измерений не хватило, как не хватило шести, семи или десяти. Математика первой теории струн обретала смысл, только если в нашей вселенной 26 измерений! Более поздним теориям хватило десяти, а в современной их одиннадцать — десять пространственных и время.

Но если так, почему мы не видим дополнительные семь измерений? Ответ прост — они слишком малы. Издалека объемный предмет будет казаться плоским: водопроводная труба покажется лентой, а воздушный шарик — кругом. Даже если бы мы могли увидеть объекты в других измерениях, мы бы не рассмотрели их многомерность. Этот эффект ученые называют компактификацией .


Дополнительные измерения свернуты в неуловимо малые формы пространства-времени — их называют простанствами Калаби-Яу. Издалека выглядит плоским.

Семь дополнительных измерений мы можем представить только в виде математических моделей. Это фантазии, которые построены на известных нам свойствах пространства и времени. При добавлении третьего измерения мир становится объемным, и мы можем обойти препятствие. Возможно, по тому же принципу корректно добавить остальные семь измерений — и тогда по ним можно обогнуть пространство-время и попасть в любую точку любой вселенной в любой момент времени.

измерений во вселенной по первому варианту теории струн — бозонному. Сейчас его считают неактуальным


У линии только одно измерение — длина


Воздушный шарик объемный, у него есть третье измерение — высота. Но для двумерного человечка он выглядит линией


Как двумерный человечек не может представить многомерность, так и мы не можем представить все измерения вселенной

По такой модели квантовые струны путешествуют всегда и везде, а значит, одни и те же струны кодируют свойства всех возможных вселенных от их рождения и до конца времен. К сожалению, наш воздушный шарик плоский. Наш мир — лишь четырехмерная проекция одиннадцатимерной вселенной на видимые масшабы пространства-времени, и мы не можем последовать за струнами.

Когда-нибудь мы увидим Большой Взрыв

Когда-нибудь мы рассчитаем частоту вибраций струн и организацию дополнительных измерений в нашей вселенной. Тогда мы узнаем о ней абсолютно все и сможем увидеть Большой Взрыв или слетать на Альфу Центавра. Но пока это невозможно — нет никаких намеков, на что опереться в расчетах, и найти нужные цифры можно только перебором. Математики подсчитали, что перебрать придется 10 500 вариантов. Теория зашла в тупик.

И все же теория струн еще способна объяснить природу вселенной. Для этого она должна связать все другие теории, стать теорией всего.

Теория струн станет теорией всего. Может быть

Во второй половине XX века физики подтвердили ряд фундаментальных теорий о природе вселенной. Казалось, еще немного — и мы все поймем. Однако главную проблему решить не удается до сих пор: теории прекрасно работают по отдельности, но общей картины не дают.

Главных теорий две: теория относительности и квантовая теория поля.

вариантов организации 11 измерений в пространствах Калаби-Яу — хватит для всех возможных вселенных. Для сравнения, количество атомов в наблюдаемой части вселенной — порядка 10 80

вариантов организации пространств Калаби-Яу — хватит для всех возможных вселенных. Для сравнения, количество атомов в наблюдаемой вселенной — порядка 10 80

Теория относительности
описала гравитационное взаимодействие между планетами и звездами и объяснила феномен черных дыр. Это физика наглядного и логичного мира.


Модель гравитационного взаимодействия Земли и Луны в эйнштейновском пространстве-времени

Квантовая теория поля
определила типы элементарных частиц и описала 3 вида взаимодействия между ними: сильное, слабое и электромагнитное. Это физика хаоса.


Квантовый мир глазами художника. Видео с сайта MiShorts

Квантовую теорию поля с добавлением массы для нейтрино называют Стандартной моделью . Это основная теория строения вселенной на квантовом уровне. Большинство предсказаний теории подтверждается в экспериментах.

Стандартная модель делит все частицы на фермионы и бозоны. Фермионы формируют материю — в эту группу входят все наблюдаемые частицы, такие как кварк и электрон. Бозоны — это силы, которые отвечают за взаимодействие фермионов, например, фотон и глюон. Уже известно два десятка частиц, и ученые продолжают открывать новые.

Логично предположить, что и гравитационное взаимодействие передается своим бозоном. Его пока не нашли, однако описали свойства и придумали название — гравитон .

Но объединить теории не получается. По Стандартной модели, элементарные частицы — безразмерные точки, которые взаимодействуют на нулевых расстояниях. Если это правило применить к гравитону, уравнения дают бесконечные результаты, что лишает их смысла. Это лишь одно из противоречий, но оно хорошо иллюстрирует, как далека одна физика от другой.

Поэтому ученые ищут альтернативную теорию, способную объединить все теории в одну. Такую теорию назвали единой теорией поля, или теорией всего .

Фермионы
формируют все типы материи, кроме темной

Бозоны
переносят энергию между фермионами

Теория струн может объединить научный мир

Теория струн в этой роли выглядит привлекательнее других, так как сходу решает главное противоречие. Квантовые струны вибрируют, поэтому расстояние между ними больше нуля, и невозможных результатов вычислений для гравитона удается избежать. Да и сам гравитон неплохо вписывается в концепцию струн.

Но теория струн не доказана экспериментами, ее достижения остаются на бумаге. Тем удивительнее тот факт, что за 40 лет от нее не отказались — настолько велик ее потенциал. Чтобы понять, почему так происходит, оглянемся назад и посмотрим, как она развивалась.

Теория струн пережила две революции

Габриэле Венециано
(род. 1942)

Поначалу теорию струн вовсе не считали претендентом на объединение физики. Ее и открыли-то случайно. В 1968 году молодой физик-теоретик Габриэле Венециано изучал сильные взаимодействия внутри атомного ядра. Неожиданно он обнаружил, что их неплохо описывает бета-функция Эйлера — набор уравнений, которые за 200 лет до того составил швейцарский математик Леонард Эйлер. Это было странно: в те времена атом считался неделимым, а работа Эйлера решала исключительно математические задачи. Никто не понимал, почему уравнения работают, но ими активно пользовались.

Физический смысл бета-функции Эйлера выяснили два года спустя. Трое физиков, Йохиро Намбу, Хольгер Нильсен и Леонард Сасскинд, предположили, что элементарные частицы могут быть не точками, а одномерными вибрирующими струнами. Сильное взаимодействие для таких объектов уравнения Эйлера описывали идеально. Первый вариант теории струн назвали бозонным, так как он описывал струнную природу бозонов, ответственных за взаимодействия материи, и не касался фермионов, из которых материя состоит.

Теория была сырой. В ней фигурировали тахионы, а основные предсказания противоречили результатам экспериментов. И хотя от тахионов удалось избавиться с помощью многомерности Калуцы, теория струн не прижилась.

  • Габриэле Венециано
  • Йохиро Намбу
  • Хольгер Нильсен
  • Леонард Сасскинд
  • Джон Шварц
  • Майкл Грин
  • Эдвард Виттен
  • Габриэле Венециано
  • Йохиро Намбу
  • Хольгер Нильсен
  • Леонард Сасскинд
  • Джон Шварц
  • Майкл Грин
  • Эдвард Виттен

Но верные сторонники у теории остались. В 1971 году Пьер Рамон добавил в теорию струн фермионы, сократив количество измерений с 26 до десяти. Это положило начало теории суперсимметрии .

Она гласила, что каждому фермиону соответствует свой бозон, а значит, материя и энергия симметричны. Неважно, что наблюдаемая вселенная несимметрична, говорил Рамон, существуют условия, при которых симметрия все же соблюдается. А если по теории струн фермионы и бозоны кодируются одними и теми же объектами, то в этих условиях материя может превращаться в энергию, и наоборот. Это свойство струн назвали суперсимметричностью, а саму теорию струн — суперструнной.

В 1974 году Джон Шварц и Джоэль Шерк обнаружили, что некоторые свойства струн удивительно точно совпали со свойствами предполагаемого переносчика гравитации — гравитона. С этого момента теория начала всерьез претендовать на обобщающую.

измерений пространства-времени было в первой теории суперструн


«Математическая структура теории струн столь прекрасна и имеет столько поразительных свойств, что, несомненно, должна указывать на что-то более глубокое»

Первая суперструнная революция произошла в 1984 году. Джон Шварц и Майкл Грин представили математическую модель, которая показывала, что многие противоречия между теорией струн и Стандартной моделью устранимы. Новые уравнения также связывали теорию со всеми видами материи и энергии. Научный мир охватила лихорадка — физики бросали свои исследования и переключались на изучение струн.

С 1984 по 1986 года было написано более тысячи работ по теории струн. Они показали, что многие положения Стандартной модели и теории гравитации, которые годами собирались по крупицам, естественным образом вытекают из струнной физики. Исследования убедили ученых, что объединяющая теория не за горами.


«Момент, когда вы знакомитесь с теорией струн и осознаете, что почти все основные достижения физики последнего столетия следуют — и следуют с такой элегантностью — из столь простой отправной точки, ясно демонстрирует вам всю невероятную мощь этой теории»

Но теория струн не спешила раскрывать свои тайны. На месте решенных проблем возникали новые. Ученые обнаружили, что существует не одна, а пять теорий суперструн. В них струны обладали разными типами суперсимметрии, и не было никакой возможности понять, какая из теорий верна.

Математические методы имели свой предел. Физики привыкли к сложным уравнениям, которые не дают точных результатов, однако для теории струн не получалось написать даже точных уравнений. А приближенные результаты приближенных уравнений не давали ответов. Стало ясно, что для изучения теории нужна новая математика, но никто не знал, какая именно. Пыл ученых поутих.

Вторая суперструнная революция прогремела в 1995 году. Конец застою положил доклад Эдварда Виттена на конференции по теории струн в Южной Калифорнии. Виттен показал, что все пять теорий — это частные случаи одной, более общей теории суперструн, в которой не десять измерений, а одиннадцать. Объединяющую теорию Виттен назвал М-теорией, или Матерью всех теорий, от английского слова Mother.

Но важнее было другое. М-теория Виттена настолько хорошо описывала эффект гравитации в теории суперструн, что ее назвали суперсимметричной теорией гравитации, или теорией супергравитации . Это воодушевило ученых, и научные журналы вновь заполнили публикации по струнной физике.

измерений пространства-времени в современной теории суперструн


«Теория струн — это часть физики двадцать первого века, случайно попавшая в век двадцатый. Могут пройти десятилетия, или даже столетия, прежде чем она будет полностью разработана и осознана»

Отголоски этой революции слышны и сегодня. Но несмотря на все усилия ученых, в теории струн больше вопросов, чем ответов. Современная наука пытается построить модели многомерной вселенной и изучает измерения как мембраны пространства. Их называют бранами — помните пустоту, на которой натянуты открытые струны? Предполагают, что и сами струны могут оказаться двух- или трехмерными. Даже говорят о новой 12-мерной фундаментальной теории — F-теории, Отце всех теорий, от слова Father. История теории струн далека от завершения.

Теорию струн пока не доказали — но и не опровергли

Главная проблема теории — в отсутствии прямых доказательств. Да, из нее вытекают другие теории, ученые складывают 2 и 2, и получается 4. Но это не значит, что четверка состоит из двоек. Эксперименты на Большой адронном коллайдере пока не обнаружили и суперсимметрию, что подтвердило бы единую структурную основу вселенной и сыграло бы на руку сторонникам струнной физики. Но нет и опровержений. А потому элегантная математика теории струн продолжает будоражить умы ученых, обещая разгадки всех тайн мироздания.

Говоря о теории струн, нельзя не упомянуть Брайана Грина, профессора Колумбийского университета и неутомимого популяризатора теории. Грин выступает с лекциями и снимается на телевидении. В 2000 году его книга «Элегантная вселенная. Суперструны, скрытые размерности и поиск окончательной теории» стала финалистом Пулитцеровской премии. В 2011 он сыграл себя в 83-й серии «Теории Большого Взрыва». В 2013 году посетил Московский политехнический институт и дал интервью «Ленте-ру»

Если не хотите становиться знатоком теории струн, но хотите понимать, в каком мире живете, запомните шпаргалку:

  1. Вселенная состоит из нитей энергии — квантовых струн, которые вибрируют как струны музыкальных инструментов. Разная частота вибрации превращает струны в разные частицы.
  2. Концы струн могут быть свободны, а могут замыкаться друг на друга, образуя петли. Струны все время замыкаются, размыкаются и обмениваются энергией с другими струнами.
  3. Квантовые струны существуют в 11-мерной вселенной. Дополнительные 7 измерений свернуты в неуловимо малые формы пространства-времени, поэтому мы их не видим. Это называется компактификацией измерений.
  4. Если бы мы узнали, как именно свернуты измерения в нашей вселенной, то, возможно, смогли бы путешествовать во времени и к другим звездам. Но пока это невозможно — слишком много вариантов нужно перебрать. Их бы хватило на все возможные вселенные.
  5. Теория струн может объединить все физические теории и открыть нам тайны мироздания — для этого есть все предпосылки. Но пока нет доказательств.
  6. Из теории струн логически следуют другие открытия современной науки. К сожалению, это ничего не доказывает.
  7. Теория струн пережила две суперструнные революции и многолетние периоды забвения. Одни ученые считают ее научной фантастикой, другие верят, что новые технологии помогут ее доказать.
  8. Самое главное: если планируете рассказать о теории струн друзьям, убедитесь, что среди них нет физика — сбережете время и нервы. И будете выглядеть, как Брайан Грин в Политехническом институте:

Теория суперструн, популярным языком, представляет вселенную как совокупность вибрирующих нитей энергии - струн. Они являются основой природы. Гипотеза описывает и другие элементы - браны. Все вещества в нашем мире состоят из колебаний струн и бран. Естественным следствием теории является описание гравитации. Именно поэтому ученые считают, что в ней содержится ключ к объединению силы тяжести с другими взаимодействиями.

Концепция развивается

Теория единого поля, теория суперструн, - сугубо математическая. Как и все физические концепции, она основана на уравнениях, которые могут быть определенным образом интерпретированы.

Сегодня никто не знает точно, каким будет окончательный вариант этой теории. Ученые имеют довольно смутное представление об ее общих элементах, но никто еще не придумал окончательного уравнения, охватившего бы все теории суперструн, а экспериментально до сих пор не удалось ее подтвердить (хотя и опровергнуть тоже). Физики создали упрощенные версии уравнения, но пока что оно не вполне описывает нашу вселенную.

Теория суперструн для начинающих

В основе гипотезы положены пять ключевых идей.

  1. Теория суперструн предсказывает, что все объекты нашего мира состоят из вибрирующих нитей и мембран энергии.
  2. Она пытается совместить общую теорию относительности (гравитации) с квантовой физикой.
  3. Теория суперструн позволит объединить все фундаментальные силы вселенной.
  4. Эта гипотеза предсказывает новую связь, суперсимметрию, между двумя принципиально различными типами частиц, бозонами и фермионами.
  5. Концепция описывает ряд дополнительных, обычно ненаблюдаемых измерений Вселенной.

Струны и браны

Когда теория возникла в 1970 годы, нити энергии в ней считались 1-мерными объектами - струнами. Слово «одномерный» говорит о том, что струна имеет только 1 измерение, длину, в отличие от, например, квадрата, который имеет длину и высоту.

Эти суперструны теория делит на два вида - замкнутые и открытые. Открытая струна имеет концы, которые не соприкасаются друг с другом, в то время как замкнутая струна является петлей без открытых концов. В итоге было установлено, что эти струны, называемые струнами первого типа, подвержены 5 основным типам взаимодействий.

Взаимодействия основаны на способности струны соединять и разделять свои концы. Поскольку концы открытых струн могут объединиться, чтобы образовывать замкнутые, нельзя построить теорию суперструн, не включающую закольцованные струны.

Это оказалось важным, так как замкнутые струны обладают свойствами, как полагают физики, которые могли бы описать гравитацию. Другими словами, ученые поняли, что теория суперструн вместо объяснения частиц материи может описывать их поведение и силу тяжести.

Через многие годы было обнаружено, что, кроме струн, теории необходимы и другие элементы. Их можно рассматривать как листы, или браны. Струны могут крепиться к их одной или обеим сторонам.

Квантовая гравитация

Современная физика имеет два основных научных закона: общую теорию относительности (ОТО) и квантовую. Они представляют совершенно разные области науки. Квантовая физика изучает мельчайшие природные частицы, а ОТО, как правило, описывает природу в масштабах планет, галактик и вселенной в целом. Гипотезы, которые пытаются объединить их, называются теориями квантовой гравитации. Наиболее перспективной из них сегодня является струнная.

Замкнутые нити соответствуют поведению силы тяжести. В частности, они обладают свойствами гравитона, частицы, переносящей гравитацию между объектами.

Объединение сил

Теория струн пытается объединить четыре силы - электромагнитную, сильные и слабые ядерные взаимодействия, и гравитацию - в одну. В нашем мире они проявляют себя как четыре различные явления, но струнные теоретики считают, что в ранней Вселенной, когда были невероятно высокие уровни энергии, все эти силы описываются струнами, взаимодействующими друг с другом.

Суперсимметрия

Все частицы во вселенной можно разделить на два типа: бозоны и фермионы. Теория струн предсказывает, что между ними существует связь, называемая суперсимметрией. При суперсимметрии для каждого бозона должен существовать фермион и для каждого фермиона - бозон. К сожалению, экспериментально существование таких частиц не подтверждено.

Суперсимметрия является математической зависимостью между элементами физических уравнений. Она была обнаружена в другой области физики, а ее применение привело к переименованию в теорию суперсимметричных струн (или теория суперструн, популярным языком) в середине 1970 годов.

Одним из преимуществ суперсимметрии является то, что она значительно упрощает уравнения, позволяя исключить некоторые переменные. Без суперсимметрии уравнения приводят к физическим противоречиям, таким как бесконечные значения и воображаемые

Поскольку ученые не наблюдали частицы, предсказанные суперсимметрией, она все еще является гипотезой. Многие физики считают, что причина этого - необходимость в значительном количестве энергии, которая связана с массой известным уравнением Эйнштейна E = mc 2 . Эти частицы могли существовать в ранней вселенной, но так как она остыла, и после Большого взрыва энергия распространилась, эти частицы перешли на низкоэнергетические уровни.

Другими словами, струны, вибрировавшие как высокоэнергетические частицы, утратили энергию, что превратило их в элементы с более низкой вибрацией.

Ученые надеются, что астрономические наблюдения или эксперименты с ускорителями частиц подтвердят теорию, выявив некоторые из суперсимметричных элементов с более высокой энергией.

Дополнительные измерения

Другим математическим следствием теории струн является то, что она имеет смысл в мире, число измерений которого больше трех. В настоящее время этому существует два объяснения:

  1. Дополнительные измерения (шесть из них) свернулись, или, в терминологии теории струн, компактифицировались до невероятно малых размеров, воспринять которые никогда не удастся.
  2. Мы застряли в 3-мерной бране, а другие измерения простираются вне ее и для нас недоступны.

Важным направлением исследований среди теоретиков является математическое моделирование того, как эти дополнительные координаты могут быть связаны с нашими. Последние результаты предсказывают, что ученые в скором времени смогут обнаружить эти дополнительные измерения (если они существуют) в предстоящих экспериментах, так как они могут быть больше, чем ожидалось ранее.

Понимание цели

Цель, к которой стремятся ученые, исследуя суперструны - «теория всего», т. е. единая физическая гипотеза, которая на фундаментальном уровне описывает всю физическую реальность. В случае успеха она могла бы прояснить многие вопросы строения нашей вселенной.

Объяснение материи и массы

Одна из основных задач современных исследований - поиск решения для реальных частиц.

Теория струн начиналась как концепция, описывающая такие частицы, как адроны, различными высшими колебательными состояниями струны. В большинстве современных формулировок, материя, наблюдаемая в нашей вселенной, является результатом колебаний струн и бран с наименьшей энергией. Вибрации с большей порождают высокоэнергичные частицы, которые в настоящее время в нашем мире не существуют.

Масса этих является проявлением того, как струны и браны завернуты в компактифицированных дополнительных измерениях. Например, в упрощенном случае, когда они свернуты в форме бублика, называемом математиками и физиками тором, струна может обернуть эту форму двумя способами:

  • короткая петля через середину тора;
  • длинная петля вокруг всей внешней окружности тора.

Короткая петля будет легкой частицей, а большая - тяжелой. При оборачивании струн вокруг торообразных компактифицированных измерений образуются новые элементы с различными массами.

Теория суперструн кратко и понятно, просто и элегантно объясняет переход длины в массу. Свернутые измерения здесь гораздо сложнее тора, но в принципе они работают также.

Возможно даже, хотя это трудно представить, что струна оборачивает тор в двух направлениях одновременно, результатом чего будет другая частица с другой массой. Браны тоже могут оборачивать дополнительные измерения, создавая еще больше возможностей.

Определение пространства и времени

Во многих версиях теория суперструн измерения сворачивает, делая их ненаблюдаемыми на современном уровне развития технологии.

В настоящее время не ясно, сможет ли теория струн объяснить фундаментальную природу пространства и времени больше, чем это сделал Эйнштейн. В ней измерения являются фоном для взаимодействия струн и самостоятельного реального смысла не имеют.

Предлагались объяснения, до конца не доработанные, касавшиеся представления пространства-времени как производного общей суммы всех струнных взаимодействий.

Такой подход не отвечает представлениям некоторых физиков, что привело к критике гипотезы. Конкурентная теория в качестве отправной точки использует квантование пространства и времени. Некоторые считают, что в конечном итоге она окажется лишь другим подходом ко все той же базовой гипотезе.

Квантование силы тяжести

Главным достижением данной гипотезы, если она подтвердится, будет квантовая теория гравитации. Текущее описание в ОТО не согласуется с квантовой физикой. Последняя, накладывая ограничения на поведение небольших частиц, при попытке исследовать Вселенную в крайне малых масштабах ведет к возникновению противоречий.

Унификация сил

В настоящее время физикам известны четыре фундаментальные силы: гравитация, электромагнитная, слабые и сильные ядерные взаимодействия. Из теории струн следует, что все они когда-то являлись проявлениями одной.

Согласно этой гипотезе, так как ранняя вселенная остыла после большого взрыва, это единое взаимодействие стало распадаться на разные, действующие сегодня.

Эксперименты с высокими энергиями когда-нибудь позволят нам обнаружить объединение этих сил, хотя такие опыты находятся далеко за пределами текущего развития технологии.

Пять вариантов

После суперструнной революции 1984 г., разработки велись с лихорадочной быстротой. В итоге вместо одной концепции получилось пять, названных тип I, IIA, IIB, HO, HE, каждая из которых почти полностью описывала наш мир, но не до конца.

Физики, перебирая версии теории струн в надежде найти универсальную истинную формулу, создали 5 разных самодостаточных варианта. Какие-то их свойства отражали физическую реальность мира, другие не соответствовали действительности.

М-теория

На конференции в 1995 году физик Эдвард Виттен предложил смелое решение проблемы пяти гипотез. Основываясь на недавно обнаруженой дуальности, все они стали частными случаями единой всеобъемлющей концепции, названной Виттеном М-теория суперструн. Одним из ключевых ее понятий стали браны (сокращение от мембраны), фундаментальные объекты, обладающие более чем 1 измерением. Хотя автор не предложил полную версию, которой нет до сих пор, М-теория суперструн кратко состоит из таких черт:

  • 11-мерность (10 пространственных плюс 1 временное измерение);
  • двойственности, которые приводят к пяти теориям, объясняющих ту же физическую реальность;
  • браны - струны, с более чем 1 измерением.

Следствия

В результате вместо одного возникло 10 500 решений. Для некоторых физиков это стало причиной кризиса, другие же приняли антропный принцип, объясняющий свойства вселенной нашим присутствием в ней. Остается ожидать, когда теоретики найдут другой способ ориентирования в теории суперструн.

Некоторые интерпретации говорят о том, что наш мир не единственный. Наиболее радикальные версии позволяют существование бесконечного числа вселенных, некоторые из которых содержат точные копии нашей.

Теория Эйнштейна предсказывает существование свернутого пространства, которое называют червоточиной или мостом Эйнштейна-Розена. В этом случае два отдаленных участка связаны коротким проходом. Теория суперструн позволяет не только это, но и соединение отдаленных точек параллельных миров. Возможен даже переход между вселенными с разными законами физики. Однако вероятен вариант, когда квантовая теория гравитации сделает их существование невозможным.

Многие физики считают, что голографический принцип, когда вся информация, содержащаяся в объеме пространства, соответствует информации, записанной на его поверхности, позволит глубже понять концепцию энергетических нитей.

Некоторые полагают, что теория суперструн позволяет множественность измерений времени, следствием чего может быть путешествие через них.

Кроме того, в рамках гипотезы существует альтернатива модели большого взрыва, согласно которой наша вселенная появилась в результате столкновения двух бран и проходит через повторяющиеся циклы создания и разрушения.

Конечная судьба мироздания всегда занимала физиков, и окончательная версия теории струн поможет определить плотность материи и космологическую константу. Зная эти значения, космологи смогут установить, будет ли вселенная сжиматься до тех пор, пока не взорвется, чтобы все началось снова.

Никто не знает, к чему может привести пока она не будет разработана и проверена. Эйнштейн, записав уравнение E=mc 2 , не предполагал, что оно приведет к появлению ядерного оружия. Создатели квантовой физики не знали, что она станет основой для создания лазера и транзистора. И хотя сейчас еще не известно, к чему приведет такая сугубо теоретическая концепция, история свидетельствует о том, что наверняка получится что-то выдающееся.

Подробнее об этой гипотезе можно прочесть в книге Эндрю Циммермана «Теория суперструн для чайников».



Рассказать друзьям