Анизотропная фильтрация текстур. Различные насторойки фильтрации и сглаживания текстур на примере Counter-Strike:Source

💖 Нравится? Поделись с друзьями ссылкой

Фильтрация текстур.

Фильтрация решает задачи определения цвета пикселя на базе имеющихся текселей из текстурного изображения.

Простейший метод наложения текстур называется поточечная выборка (single point-sampling). Суть его в том, что для каждого пикселя, составляющего полигон, выбирается один тексель из текстурного изображения, ближе всех расположенный к центру светового пятна. Совершается ошибка, так как цвет пикселя определяют несколько текселей, а выбран был только один.

Этот метод очень неточен и результатом его применения является появление неровностей. А именно, всякий раз, когда пиксели больше по размеру, чем тексели, наблюдается эффект мерцания. Этот эффект имеет место, если часть полигона достаточно удалена от точки наблюдения, так, что сразу много текселей накладываются на пространство, занимаемое одним пикселем. Заметим, что если полигон расположен очень близко к точке наблюдения и тексели больше по размеру, чем пиксели, наблюдается другой тип ухудшения качества изображения. В данном случае, изображение начинает выглядеть блочным. Этот эффект имеет место, когда текстура может быть достаточно большой, но ограничение в виде доступного разрешения экрана не дает возможности правильно представить исходное изображение.

Второй метод - билинейная фильтрация (Bi-Linear Filtering) состоит в использовании интерполяционной техники. Для определения текселей, которые должны быть задействованы для интерполяции, используется основная форма светового пятна -- круг. По существу, круг аппроксимируется 4 текселями. Билинейная фильтрация - это техника устранения искажений изображения (фильтрация), таких, как "блочности" текстур при их увеличении. При медленном вращении или движении объекта (приближение/удаление) могут быть заметны "перескакивания" пикселов с одного места на другое, т.е. появляется блочность. Во избежании этого эффекта применяют билинейную фильтрацию, при использовании которой для определения цвета каждого пикселя берется взвешенное среднее значение цвета четырех смежных текселей и в результате определяется цвет накладываемой текстуры. Результирующий цвет пикселя определяется после осуществления трех операций смешивания: сначала смешиваются цвета двух пар текселей, а потом смешиваются два полученных цвета.

Главный недостаток билинейной фильтрации в том, что аппроксимация выполняется корректно только для полигонов, которые расположены параллельно экрану или точке наблюдения. Если полигон развернут под углом (а это в 99% случаев), используется неправильная аппроксимация, так как должен аппроксимироваться эллипс.

Ошибки "depth aliasing" возникают в результате того факта, что объекты более отдаленные от точки наблюдения, выглядят более маленькими на экране. Если объект двигается и удаляется от точки наблюдения, текстурное изображение, наложенное на уменьшившийся в размерах объект становится все более и более сжатым. В конечном счете, текстурное изображение, наложенное на объект, становится настолько сжатым, что появляются ошибки визуализации. Эти ошибки визуализации особенно нежелательны в анимации, где такие артефакты во время движения становятся причиной мерцания и эффекта медленного движения в той части изображения, которая должна быть неподвижной и стабильной.

В качестве иллюстрации к описанному эффекту могут служить следующие прямоугольники с билинейным текстурированием:

Рис. 13.29. Закраска объекта методом билинейной фильтрации. Появление артефактов "depth-aliasing", выражающихся в том, что несколько квадратов сливаются в один.

Для избежания ошибок и имитации того факта, что объекты на расстоянии выглядят менее детализированными, чем те, что находятся ближе к точке наблюдения, используется техника, известная как mip-mapping . Если говорить кратко, то mip-mapping - наложение текстур, имеющих разную степень или уровень детализации, когда в зависимости от расстояния до точки наблюдения выбирается текстура с необходимой детализацией.

Mip-текстура (mip-map) состоит из набора заранее отфильтрованных и масштабированных изображений. В изображении, связанном с уровнем mip-map, пиксель представляется в виде среднего четырех пикселей из предыдущего уровня с более высоким разрешением. Отсюда, изображение связанное с каждым уровнем mip-текстуры в четыре раза меньше по размеру предыдущего mip-map уровня.

Рис. 13.30. Изображения, связанные с каждым mip-map уровнем волнообразной текстуры.

Слева направо мы имеем mip-map уровни 0, 1, 2 и т.д. Чем меньше становится изображение, тем больше теряется деталей, вплоть до приближения к концу, когда не видно ничего, кроме расплывающегося пятна из серых пикселей.

Степень или уровень детализации - Level of Detail или просто LOD, используются для определения, какой mip-map уровень (или какую степень детализации) следует выбрать для наложения текстуры на объект. LOD должен соответствовать числу текселей накладываемых на пиксель. Например, если текстурирование происходит с соотношением близким к 1:1, то LOD будет 0, а значит и будет использоваться mip-map уровень с самым высоким разрешением. Если 4 текселя накладываются на один пиксель, то LOD будет 1 и будет использоваться следующий mip уровень с меньшим разрешением. Обычно, при удалении от точки наблюдения, объект, заслуживающий наибольшего внимания имеет более высокое значение LOD.

В то время, как mip-текстурирование решает проблему ошибок "depth-aliasing", его использование может стать причиной появления других артефактов. При удалении объекта все дальше от точки наблюдения, происходит переход от низкого mip-map уровня к высокому. В момент нахождения объекта в переходном состоянии от одного mip-map уровня к другому, появляется особый тип ошибок визуализации, известных под названием "mip-banding" - полосатость или слоеность, т.е. явно различимые границы перехода от одного mip-map уровня к другому.

Рис. 13.31. Прямоугольная лента состоит из двух треугольников, текстурированных волнообразным изображением, где "mip-banding" артефакты обозначены красными стрелками.

Особенно остро проблема наличия ошибок "mip-banding" стоит в анимации, за счет того, что человеческий глаз очень чувствителен к смещениям и может легко заметить место резкого перехода между уровнями фильтрации при движении вокруг объекта.

Трилинейная фильтрация (trilinear filtering) представляет собой третий метод, который удаляет артефакты "mip-banding", возникающие при использовании mip-текстурирования. При трилинейной фильтрации для определения цвета пикселя берется среднее значение цвета восьми текселей, по четыре из двух соседних текстур и в результате семи операций смешивания определяется цвет пикселя. При использовании трилинейной фильтрации возможен вывод на экран текстурированного объекта с плавно выполненными переходами от одного mip уровня к следующему, что достигается за счет определения LOD путем интерполяции двух соседних mip-map уровней. Таким образом решая большинство проблем, связанных с mip-текстурированием и ошибками из-за неправильного расчета глубины сцены ("depth aliasing").

Рис. 13.32. Пирамидальность MIP-map

Пример использования трилинейной фильтрации приведен ниже. Здесь опять используется все тот же прямоугольник, текстурированный волнообразным изображением, но с плавными переходами от одного mip уровня к следующему за счет использования трилинейной фильтрации. Обратите внимание на отсутствие каких-либо заметных ошибок визуализации.

Рис. 13.33. Прямоугольник, текстурированный волнообразным изображением, выведен на экран с использованием mip-текстурирования и трилинейной фильтрации.

Существует несколько способов генерации MIP текстур. Один из них - просто подготовить их заранее, используя графические пакеты типа Adobe PhotoShop. Другой способ - генерация MIP текстур на "лету", т.е. в процессе выполнения программы. Заранее подготовленные MIP текстуры означают дополнительные 30% дискового пространства для текстур в базовой поставке инсталляции игры, но позволяют применять более гибкие методы управления их созданием и позволяют добавлять различные эффекты и дополнительные детали различным MIP уровням.

Получается, что трилинейный мипмеппинг это лучшее, что может быть?

Нет конечно. Видно, что проблема не только в соотношении размеров пикселя и текселя, но также и в форме каждого из них (или, что бы быть более точными, в соотношениях форм).

Метод mip-текстурирования лучше всего работает для полигонов расположенных прямо "лицом к лицу" к точке наблюдения. Однако, полигоны, косонаправленные по отношению к точке наблюдения искривляют накладываемую текстуру так, что на пикселы могут накладываться различного вида и квадратичные по форме области текстурного изображения. Метод mip-текстурирования не принимает это во внимание и в результате наблюдается эффект слишком сильного размытия текстурного изображения, так, будто использованы неправильно выбранные тексели. Для решения этой проблемы нужно делать выборку из большего количества текселей, составляющих текстуру, и выбирать эти тексели следует принимая во внимание "отображенную" форму пикселя в текстурном пространстве. Этот метод называется анизотропная фильтрация ("anisotropic filtering"). Обычное mip-текстурирование называется "isotropic" (изотропное или однородное), потому что мы всегда фильтруем вместе квадратные области, состоящие из текселей. Анизотропная фильтрация означает, что форма области из текселей, которую мы используем меняется в зависимости от обстоятельств.

Привет всем! Сегодня очень интересная статья о тонкой настройке видеокарты для высокой производительности в компьютерных играх. Согласитесь друзья, что после установки драйвера видеокарты вы один раз открыли «Панель управления Nvidia» и увидев там незнакомые слова: DSR, шейдеры, CUDA, синхроимпульс, SSAA, FXAA и так далее, решили туда больше не лазить. Но тем не менее, разобраться во всём этом можно и даже нужно, ведь от данных настроек напрямую зависит производительность . Существует ошибочное мнение, что всё в этой мудрёной панели настроено правильно по умолчанию, к сожалению это далеко не так и опыты показывают, правильная настройка вознаграждается весомым увеличением кадровой частоты. Так что приготовьтесь, будем разбираться в потоковой оптимизации, анизотропной фильтрации и тройной буферизации. В итоге вы не пожалеете и вас будет ждать награда в виде увеличения FPS в играх.

Настройка видеокарты Nvidia для игр

Темпы развития игрового производства с каждым днем набирают все больше и больше оборотов, впрочем, как и курс основной денежной единицы в России, а поэтому актуальность оптимизации работы железа, софта и операционной системы резко повысилась. Держать своего стального жеребца в тонусе за счет постоянных финансовых вливаний не всегда удается, поэтому мы с вами сегодня и поговорим о повышении быстродействия видеокарты за счет ее детальной настройки. В своих статьях я неоднократно писал о важности установки видеодрайвера, поэтому , думаю, можно пропустить. Я уверен, все вы прекрасно знаете, как это делать, и у всех вас он давно уже установлен.

Итак, для того, чтобы попасть в меню управления видеодрайвером, кликайте правой кнопкой мыши по любому месту на рабочем столе и выбирайте в открывшемся меню «Панель управления Nvidia».

После чего, в открывшемся окне переходите во вкладку «Управление параметрами 3D».

Здесь мы с вами и будем настраивать различные параметры, влияющие на отображение 3D картинки в играх. Не трудно понять, что для получения максимальной производительности видеокарты придется сильно порезать изображение в плане качества, так что будьте к этому готовы.

Итак, первый пункт «CUDA – графические процессоры ». Здесь представлен список видеопроцессоров, один из которых вы можете выбрать, и он будет использоваться приложениями CUDA. CUDA (Compute Unified Device Architecture) – это архитектура параллельных вычислений использующаяся всеми современными графическими процессорами для увеличения вычислительной производительности.

Следующий пункт «DSR - Плавность » мы пропускаем, потому что он является частью настройки пункта "DSR - Степень”, а его в свою очередь нужно отключать и сейчас я объясню почему.

DSR (Dynamic Super Resolution) – технология позволяющая рассчитывать картинку в играх в более высоком разрешении, а затем масштабирующая полученный результат до разрешения вашего монитора. Для того чтобы вы поняли для чего эта технология вообще была придумана и почему она не нужна нам для получения максимальной производительности, я попробую привести пример. Наверняка вы часто замечали в играх, что мелкие детали, такие как трава и листва очень часто мерцают или рябят при движении. Связано это с тем, что, чем меньше разрешение, тем меньше число точек выборки для отображения мелких деталей. Технология DSR позволяет это исправить за счет увеличения числа точек (чем больше разрешение, тем больше число точек выборки). Надеюсь, так будет понятно. В условиях максимальной производительности эта технология нам не интересна так, как затрачивает довольно много системных ресурсов. Ну а с отключенной технологией DSR, настройка плавности, о которой я писал чуть выше, становится невозможна. В общем, отключаем и идем дальше.

Далее идет анизотропная фильтрация . Анизотропная фильтрация – алгоритм компьютерной графики, созданный для улучшения качества текстур, находящихся под наклоном относительно камеры. То есть при использовании данной технологии текстуры в играх становятся более четкие. Если сравнивать антизотропную фильтрацию со своими предшественниками, а именно с билинейной и трилинейной фильтрациями, то анизотропная является самой прожорливой с точки зрения потребления памяти видеокарты. Данный пункт имеется только одну настройку – выбор коэффициента фильтрации. Не трудно догадаться, что данную функцию необходимо отключать.

Следующий пункт – вертикальный синхроимпульс . Это синхронизация изображения с частотой развертки монитора. Если включить данный параметр, то можно добиться максимально плавного геймплея (убираются разрывы изображения при резких поворотах камеры), однако зачастую возникают просадки кадров ниже частоты развертки монитора. Для получения максимального количества кадров в секунду данный параметр лучше отключить.

Заранее подготовленные кадры виртуальной реальности . Функция для очков виртуальной реальности нам не интересна, так как VR еще далека до повседневного использования обычных геймеров. Оставляем по умолчанию – использовать настройку 3D приложения.

Затенение фонового освещения . Делает сцены более реалистичными за счет смягчения интенсивности окружающего освещения поверхностей, которые затенены находящимися рядом объектами. Функция работает не во всех играх и очень требовательна к ресурсам. Поэтому сносим ее к цифровой матери.

Кэширование шейдеров . При включении данной функции центральный процессор сохраняет скомпилированные для графического процессора шейдеры на диск. Если этот шейдер понадобится еще раз, то GPU возьмет его прямо с диска, не заставляя CPU проводить повторную компиляцию данного шейдера. Не трудно догадаться, что если отключить этот параметр, то производительность упадет.

Максимальное количество заранее подготовленных кадров . Количество кадров, которое может подготовить ЦП перед их обработкой графическим процессором. Чем выше значение, тем лучше.

Многокадровое сглаживание (MFAA) . Одна из технологий сглаживания используемая для устранения "зубчатости” на краях изображений. Любая технология сглаживания (SSAA, FXAA) очень требовательна к графическому процессору (вопрос лишь в степени прожорливости). Выключаем.

Потоковая оптимизация . Благодаря включению этой функции приложение может задействовать сразу несколько ЦП. В случае, если старое приложение работает некорректно попробуй поставить режим "Авто” или же вовсе отключить эту функцию.

Режим управления электропитанием . Возможно два варианта – адаптивный режим и режим максимальной производительности. Во время адаптивного режима энергопотребление зависит напрямую от степени загрузки ГП. Этот режим в основном нужен для снижения энергопотребления. Во время режима максимальной производительности, как не трудно догадаться, поддерживается максимально возможный уровень производительности и энергопотребления независимо от степени загрузки ГП. Ставим второй.

Сглаживание – FXAA, Сглаживание – гамма-коррекция, Сглаживание – параметры, Сглаживание – прозрачность, Сглаживание - режим . Про сглаживание я уже писал чуть выше. Выключаем всё.

Тройная буферизация . Разновидность двойной буферизации; метод вывода изображения, позволяющий избежать или уменьшить количество артефактов (искажение изображения). Если говорить простыми словами, то увеличивает производительность. НО! Работает эта штука только в паре с вертикальной синхронизацией, которую, как вы помните, мы до этого отключили. Поэтому этот параметр тоже отключаем, он для нас бесполезен.

В современных играх используется все больше графических эффектов и технологий, улучшающих картинку. При этом разработчики обычно не утруждают себя объяснением, что же именно они делают. Когда в наличии не самый производительный компьютер, частью возможностей приходится жертвовать. Попробуем рассмотреть, что обозначают наиболее распространенные графические опции, чтобы лучше понимать, как освободить ресурсы ПК с минимальными последствиями для графики.

Анизотропная фильтрация

Когда любая текстура отображается на мониторе не в своем исходном размере, в нее необходимо вставлять дополнительные пикселы или, наоборот, убирать лишние. Для этого применяется техника, называемая фильтрацией.

Триленейная

Анизатропная

Билинейная фильтрация является самым простым алгоритмом и требует меньше вычислительной мощности, однако и дает наихудший результат. Трилинейная добавляет четкости, но по-прежнему генерирует артефакты. Наиболее продвинутым способом, устраняющим заметные искажения на объектах, сильно наклоненных относительно камеры, считается анизо­тропная фильтрация. В отличие от двух предыдущих методов она успешно борется с эффектом ступенчатости (когда одни части текстуры размываются сильнее других, и граница между ними становится явно заметной). При использовании билинейной или трилинейной фильтрации с увеличением расстояния текстура становится все более размытой, анизотропная же этого недостатка лишена.

Учитывая объем обрабатываемых данных (а в сцене может быть множество 32-битовых текстур высокого разрешения), анизотропная фильтрация особенно требовательна к пропускной способности памяти. Уменьшить трафик можно в первую очередь за счет компрессии текстур, которая сейчас применяется повсеместно. Ранее, когда она практиковалась не так часто, а пропуская способность видеопамяти была гораздо ниже, анизотропная фильтрация ощутимо снижала количество кадров. На современных же видеокартах она почти не влияет на fps.

Анизотропная фильтрация имеет лишь одну настройку – коэффициент фильтрации (2x, 4x, 8x, 16x). Чем он выше, тем четче и естественнее выглядят текстуры. Обычно при высоком значении небольшие артефакты заметны лишь на самых удаленных пикселах наклоненных текстур. Значений 4x и 8x, как правило, вполне достаточно для избавления от львиной доли визуальных искажений. Интересно, что при переходе от 8x к 16x снижение производительности будет довольно слабым даже в теории, поскольку дополнительная обработка понадобится лишь для малого числа ранее не фильтрованных пикселов.

Шейдеры

Шейдеры – это небольшие программы, которые могут производить определенные манипуляции с 3D-сценой, например, изменять освещенность, накладывать текстуру, добавлять постобработку и другие эффекты.

Шейдеры делятся на три типа: вершинные (Vertex Shader) оперируют координатами, геометрические (Geometry Shader) могут обрабатывать не только отдельные вершины, но и целые геометрические фигуры, состоящие максимум из 6 вершин, пиксельные (Pixel Shader) работают с отдельными пикселами и их параметрами.

Шейдеры в основном применяются для создания новых эффектов. Без них набор операций, которые разработчики могли бы использовать в играх, весьма ограничен. Иными словами, добавление шейдеров позволило получать новые эффекты, по умолчанию не заложенные в видеокарте.

Шейдеры очень продуктивно работают в параллельном режиме, и именно поэтому в современных графических адаптерах так много потоковых процессоров, которые тоже называют шейдерами. Например, в GeForce GTX 580 их целых 512 штук.

Parallax mapping

Parallax mapping – это модифицированная версия известной техники bumpmapping, используемой для придания текстурам рельефности. Parallax mapping не создает 3D-объектов в обычном понимании этого слова. Например, пол или стена в игровой сцене будут выглядеть шероховатыми, оставаясь на самом деле абсолютно плоскими. Эффект рельефности здесь достигается лишь за счет манипуляций с текстурами.

Исходный объект не обязательно должен быть плоским. Метод работает на разных игровых предметах, однако его применение желательно лишь в тех случаях, когда высота поверхности изменяется плавно. Резкие перепады обрабатываются неверно, и на объекте появляются артефакты.

Parallax mapping существенно экономит вычислительные ресурсы компьютера, поскольку при использовании объектов-аналогов со столь же детальной 3D-структурой производительности видеоадаптеров не хватало бы для просчета сцен в режиме реального времени.

Эффект чаще всего применяется для каменных мостовых, стен, кирпичей и плитки.

Anti-Aliasing

До появления DirectX 8 сглаживание в играх осуществлялось методом SuperSampling Anti-Aliasing (SSAA), известным также как Full-Scene Anti-Aliasing (FSAA). Его применение приводило к значительному снижению быстродействия, поэтому с выходом DX8 от него тут же отказались и заменили на Multisample Аnti-Аliasing (MSAA). Несмотря на то что данный способ давал худшие результаты, он был гораздо производительнее своего предшественника. С тех пор появились и более продвинутые алгоритмы, например CSAA.

AA выключено

AA включено

Учитывая, что за последние несколько лет быстродействие видеокарт заметно увеличилось, как AMD, так и NVIDIA вновь вернули в свои ускорители поддержку технологии SSAA. Тем не менее использовать ее даже сейчас в современных играх не получится, поскольку количество кадров/с будет очень низким. SSAA окажется эффективной лишь в проектах предыдущих лет, либо в нынешних, но со скромными настройками других графических параметров. AMD реализовала поддержку SSAA только для DX9-игр, а вот в NVIDIA SSAA функционирует также в режимах DX10 и DX11.

Принцип работы сглаживания очень прост. До вывода кадра на экран определенная информация рассчитывается не в родном разрешении, а увеличенном и кратном двум. Затем результат уменьшают до требуемых размеров, и тогда «лесенка» по краям объекта становится не такой заметной. Чем выше исходное изображение и коэффициент сглаживания (2x, 4x, 8x, 16x, 32x), тем меньше ступенек будет на моделях. MSAA в отличие от FSAA сглаживает лишь края объектов, что значительно экономит ресурсы видеокарты, однако такая техника может оставлять артефакты внутри полигонов.

Раньше Anti-Aliasing всегда существенно снижал fps в играх, однако теперь влияет на количество кадров незначительно, а иногда и вовсе никак не cказывается.

Тесселяция

С помощью тесселяции в компьютерной модели повышается количество полигонов в произвольное число раз. Для этого каждый полигон разбивается на несколько новых, которые располагаются приблизительно так же, как и исходная поверхность. Такой способ позволяет легко увеличивать детализацию простых 3D-объектов. При этом, однако, нагрузка на компьютер тоже возрастет, и в ряде случаев даже не исключены небольшие артефакты.

Выключена

Включена

На первый взгляд, тесселяцию можно спутать с Parallax mapping. Хотя это совершенно разные эффекты, поскольку тесселяция реально изменяет геометрическую форму предмета, а не просто симулирует рельефность. Помимо этого, ее можно применять практически для любых объектов, в то время как использование Parallax mapping сильно ограничено.

Технология тесселяции известна в кинематографе еще с 80-х го­дов, однако в играх она стала поддерживаться лишь недавно, а точнее после того, как графические ускорители наконец достигли необходимого уровня производительности, при котором она может выполняться в режиме реального времени.

Чтобы игра могла использовать тесселяцию, ей требуется видеокарта с поддержкой DirectX 11.

Вертикальная синхронизация

V-Sync – это синхронизация кадров игры с частотой вертикальной развертки монитора. Ее суть заключается в том, что полностью просчитанный игровой кадр выводится на экран в момент обновления на нем картинки. Важно, что очередной кадр (если он уже готов) также появится не позже и не раньше, чем закончится вывод предыдущего и начнется следующего.

Если частота обновления монитора составляет 60 Гц, и видео­карта успевает просчитывать 3D-сцену как минимум с таким же количеством кадров, то каждое обновление монитора будет отображать новый кадр. Другими словами, с интервалом 16,66 мс пользователь будет видеть полное обновление игровой сцены на экране.

Следует понимать, что при включенной вертикальной синхронизации fps в игре не может превышать частоту вертикальной развертки монитора. Если же число кадров ниже этого значения (в нашем случае меньше, чем 60 Гц), то во избежание потерь производительности необходимо активировать тройную буферизацию, при которой кадры просчитываются заранее и хранятся в трех раздельных буферах, что позволяет чаще отправлять их на экран.

Главной задачей вертикальной синхронизации является устранение эффекта сдвинутого кадра, возникающего, когда нижняя часть дисплея заполнена одним кадром, а верхняя – уже другим, сдвинутым относительно предыдущего.

Post-processing

Это общее название всех эффектов, которые накладываются на уже готовый кадр полностью просчитанной 3D-сцены (иными словами, на двухмерное изображение) для улучшения качества финальной картинки. Постпроцессинг использует пиксельные шейдеры, и к нему прибегают в тех случаях, когда для дополнительных эффектов требуется полная информация обо всей сцене. Изолированно к отдельным 3D-объектам такие приемы не могут быть применены без появления в кадре артефактов.

High dynamic range (HDR)

Эффект, часто используемый в игровых сценах с контрастным освещением. Если одна область экрана является очень яркой, а другая, наоборот, затемненной, многие детали в каждой из них теряются, и они выглядят монотонными. HDR добавляет больше градаций в кадр и позволяет детализировать сцену. Для его применения обычно приходится работать с более широким диапазоном оттенков, чем может обеспечить стандартная 24-битовая точность. Предварительные просчеты происходят в повышенной точности (64 или 96 бит), и лишь на финальной стадии изображение подгоняется под 24 бита.

HDR часто применяется для реализации эффекта приспособления зрения, когда герой в играх выходит из темного туннеля на хорошо освещенную поверхность.

Bloom

Bloom нередко применяется совместно с HDR, а еще у него есть довольно близкий родственник – Glow, именно поэтому эти три техники часто путают

.

Bloom симулирует эффект, который можно наблюдать при съемке очень ярких сцен обычными камерами. На полученном изображении кажется, что интенсивный свет занимает больше объема, чем должен, и «залазит» на объекты, хотя и находится позади них. При использовании Bloom на границах предметов могут появляться дополнительные артефакты в виде цветных линий.

Film Grain

Зернистость – артефакт, возникающий в аналоговом ТВ при плохом сигнале, на старых магнитных видеокассетах или фотографиях (в частности, цифровых изображениях, сделанных при недостаточном освещении). Игроки часто отключают данный эффект, поскольку он в определенной мере портит картинку, а не улучшает ее. Чтобы понять это, можно запустить Mass Effect в каждом из режимов. В некоторых «ужастиках», например Silent Hill, шум на экране, наоборот, добавляет атмосферности.

Motion Blur

Motion Blur – эффект смазывания изображения при быстром перемещении камеры. Может быть удачно применен, когда сцене следует придать больше динамики и скорости, поэтому особенно востребован в гоночных играх. В шутерах же использование размытия не всегда воспринимается однозначно. Правильное применение Motion Blur способно добавить кинематографичности в происходящее на экране.

Выключен

Включен

Эффект также поможет при необходимости завуалировать низкую частоту смены кадров и добавить плавности в игровой процесс.

SSAO

Ambient occlusion – техника, применяемая для придания сцене фотореалистичности за счет создания более правдоподобного освещения находящихся в ней объектов, при котором учитывается наличие поблизости других предметов со своими характеристиками поглощения и отражения света.

Screen Space Ambient Occlusion является модифицированной версией Ambient Occlusion и тоже имитирует непрямое освещение и затенение. Появление SSAO было обусловлено тем, что при современном уровне быстродействия GPU Ambient Occlusion не мог использоваться для просчета сцен в режиме реального времени. За повышенную производительность в SSAO приходится расплачиваться более низким качеством, однако даже его хватает для улучшения реалистичности картинки.

SSAO работает по упрощенной схеме, но у него есть множество преимуществ: метод не зависит от сложности сцены, не использует оперативную память, может функционировать в динамичных сценах, не требует предварительной обработки кадра и нагружает только графический адаптер, не потребляя ресурсов CPU.

Cel shading

Игры с эффектом Cel shading начали делать с 2000 г., причем в первую очередь они появились на консолях. На ПК по-настоящему популярной данная техника стала лишь через пару лет, после выхода нашумевшего шутера XIII. С помощью Cel shading каждый кадр практически превращается в рисунок, сделанный от руки, или фрагмент из детского мультика.

В похожем стиле создают комиксы, поэтому прием часто используют именно в играх, имеющих к ним отношение. Из последних известных релизов можно назвать шутер Borderlands, где Cel shading заметен невооруженным глазом.

Особенностями технологии является применение ограниченного набора цветов, а также отсутствие плавных градиентов. Название эффекта происходит от слова Cel (Celluloid), т. е. прозрачного материала (пленки), на котором рисуют анимационные фильмы.

Depth of field

Глубина резкости – это расстояние между ближней и дальней границей пространства, в пределах которого все объекты будут в фокусе, в то время как остальная сцена окажется размытой.

В определенной мере глубину резкости можно наблюдать, просто сосредоточившись на близко расположенном перед глазами предмете. Все, что находится позади него, будет размываться. Верно и обратное: если фокусироваться на удаленных объектах, то все, что размещено перед ними, получится нечетким.

Лицезреть эффект глубины резкости в гипертрофированной форме можно на некоторых фотографиях. Именно такую степень размытия часто и пытаются симулировать в 3D-сценах.

В играх с использованием Depth of field геймер обычно сильнее ощущает эффект присутствия. Например, заглядывая куда-то через траву или кусты, он видит в фокусе лишь небольшие фрагменты сцены, что создает иллюзию присутствия.

Влияние на производительность

Чтобы выяснить, как включение тех или иных опций сказывается на производительности, мы воспользовались игровым бенчмарком Heaven DX11 Benchmark 2.5. Все тесты проводились на системе Intel Core2 Duo e6300, GeForce GTX460 в разрешении 1280×800 точек (за исключением вертикальной синхронизации, где разрешение составляло 1680×1050).

Как уже упоминалось, анизо­тропная фильтрация практически не влияет на количество кадров. Разница между отключенной анизотропией и 16x составляет всего лишь 2 кадра, поэтому рекомендуем ее всегда ставить на максимум.

Сглаживание в Heaven Benchmark снизило fps существеннее, чем мы того ожидали, особенно в самом тяжелом режиме 8x. Тем не менее, поскольку для ощутимого улучшения картинки достаточно и 2x, советуем выбирать именно такой вариант, если на более высоких играть некомфортно.

Тесселяция в отличие от предыдущих параметров может принимать произвольное значение в каждой отдельной игре. В Heaven Benchmark картинка без нее существенно ухудшается, а на максимальном уровне, наоборот, становится немного нереалистичной. Поэтому следует устанавливать промежуточные значения – moderate или normal.

Для вертикальной синхронизации было выбрано более высокое разрешение, чтобы fps не ограничивался вертикальной частотой развертки экрана. Как и предполагалось, количество кадров на протяжении почти всего теста при включенной синхронизации держалось четко на отметке 20 или 30 кадров/с. Это связано с тем, что они выводятся одновременно с обновлением экрана, и при частоте развертки 60 Гц это удается сделать не с каждым импульсом, а лишь с каждым вторым (60/2 = 30 кадров/с) или третьим (60/3 = 20 кадров/с). При отключении V-Sync число кадров увеличилось, однако на экране появились характерные артефакты. Тройная буферизация не оказала никакого положительного эффекта на плавность сцены. Возможно, это связано с тем, что в настройках драйвера видеокарты нет опции принудительного отключения буферизации, а обычное деактивирование игнорируется бенчмарком, и он все равно использует эту функцию.

Если бы Heaven Benchmark был игрой, то на максимальных настройках (1280×800; AA – 8x; AF – 16x; Tessellation Extreme) в нее было бы некомфортно играть, поскольку 24 кадров для этого явно недостаточно. С минимальной потерей качества (1280×800; AA – 2x; AF – 16x, Tessellation Normal) можно добиться более приемлемого показателя в 45 кадров/с.

Надеюсь данная статья не только позволит вам лучше оптимизировать игру под свой компьютер, но и расширит ваш кругозор. Совсем скоро появится статья о реальном влиянии количества FPS на восприятие игры.

Сейчас покажу как настроить графическую часть в Counter-Strike: Global Offensive через пользовательский интерфейс игры и как таким образом повлиять на фпс. Это первая статья и для большинства игроков она будет вполне предсказуемой, за парочкой не больших и странных дополнений (Удивительно, но не все настройки надо опускать на минимальные значения). Настройка фпс в CS GO тема довольно большая и объемная, поэтому к его увеличению подойдем системно, ввиде серии статей. Сначала попробуем настроить его простыми, понятными средствами и уже после перейдем к консольным командам. И еще момент, т.к. вы попали на эту статью скорее всего из поисковика, то по умолчанию будем считать, что компьютер на котором все это настраивается - "не тянущий нормально игру" и при этом все драйвера у вас обновлены, дефрагментация сделана, ОС избавлена от лишних служб и красивостей, вирусов нет и подавно. Если это так, то поехали.

Команда для отображения фпс в CS: GO

В консоли набираете одну из команд:
  • cl_showfps 1
  • net_graph 1
  • или в Steam-е выбираете пункт меню Steam - Настройка - вкладка "В игре " - Отображение частоты кадров


Как повысить фпс

Перед тем, как начнете изменять параметры влияющие на графику, пропишите у себя в консоли еще одну команду:
fps_max 0 или fps_max "частота обновления монитора"
Первую, если хотите понять и увидеть насколько максимально возможным может быть фпс у вас в КС ГО.
И вторую, если хотите разумно использовать мощь своего железного друга. То есть, вы приведете в соответствие частоту обновления экрана и частоту генерирумых кадров видеокартой. Тогда это не позволит, генерировать фпс "вхолостую". Другими словами. вы все равно не увидете больше кадров созданных видеокартой, чем успевает показать ваш монитор. (Надеюсь понятно объяснил).
У второго параметра есть не который материальный и осязаемый плюс: если ваш фпс выше частосты монитора, то таким образом вы не будете по полной нагружать видеокарту, она будет меньше шуметь, меньше греться и у нее будет некий запас по производительности, в случае резкого и динамического изменения в игре и тогда возможно меньше будет не приятных просадок. Но есть и минус: не которым игрокам не нравится отзывчивость мыши в таком режиме. Так что выбор оставляю за вами.
Для себя же делал fps_max 0 , так как хотел понять насколько могу поднять фпс.

Настройки видео в CS: GO


Опишу только те параметры, которые действительно влияют на фпс.

  1. Разрешение - Думаю многим известно из вас, что профи играют на разрешении или 1024х768 или 800х600. И это на больших мониторах! Данный параметр очень сильно влияет на фпс. У меня разница между 1280х960 и 1024х768 составила 14 кадров, а между 1280х960 и 800х600 - 23 fps.
  2. Режим отображения - В нашем случае подходит На весь экран. Если выставить На весь экран в окне, то фпс просядет.
  3. Энергосберегающий режим - Выкл. Настройка в основном для ноутбуков. Но если выставите как Вкл, то фпс упадет.
  4. Общее качество теней - В общем и целом на фпс практически не влияет. Для средних и топовых видеокарт особой разницы точно не заметно между Очень низкое и Высокое. К тому же на низком разрешении визуально отличия малозаметно, есть ли смысл тогда в красивостях? Ставим Очень низкое.
  5. Детализация моделей и текстур - Эту настройку ощущает в основном только видеокарта. Поэтому, если у нее памяти достаточно, то ставьте на свое усмотрение. Со своими 256 Мб у меня разница была в 2 фпс между Низкое и Высокое.
  6. Детализация эффектов - влияет на дальность прорисовки и качество эффектов. Так вот эти эффекты обычно возникают когда сильный "замес", куча взрывов, искры, огонь и полно народу. Если у вас в такие моменты ну очень сильно проседает фпс, то попробуйте понизить данный параметр. Во всех остальных случаях - Высокое. У меня разница составила 1 fps.
  7. Детализация шейдеров - При выборе максимального значения, мой фпс упал на 3 пункта. Хотя эта настройка отвечает за качество теней и освещения, всё же вряд ли у всех такой эффект будет. Поэтому поиграйтесь с данным параметровв обе стороны, особенно у тех, у кого слабая видюха.
  8. Многоядерная обработка - в баталиях с большим количеством игроков заметен выигрыш в производительности. У меня он составил 6 фпс. Данный режим задействует несколько ядер процессора одновременно, что в идеале должно сказаться на уменьшении лагов и тормозов. Но это в теории. На практике бывают исключения. Обязательно поиграйтесь с этим значением. Оставляем Вкл.
  9. Режим сглаживания множественной выборки - Убирает эффект "зубчатости" на объектах в КС ГО. Вся нагрузка ложится на видеокарту. У меня разница между отключенным и 4xMSAA составила 7 фпс. Кому интересно, данный режим (MSAA) даёт несколько худшее качество графики, но обеспечивает огромную экономию вычислительной мощности, по сравнению со своим предшественником SSAA.
  10. Режим фильтрации текстур - Для обладателей слабых видеокарт рекомендуется билинейная. Для остальных подойдет - трилинейная. Так как в производительности разницы не заметно. При выборе анизотропной фильтрации будьте готовы потерять 1-2-3 fps-а.
  11. Сглаживание с помощью FXAA - Еще один режим сглаживания Fast appro X imate Anti-Aliasing, не понятно почему его вынесли в отдельный пункт,но оно считается более быстрое и производительное решение по сравнению с MSAA, но на моей видеокарте ATI фпс просел на 13 значений. (Не знаю с чем это связано, возможно с драйвером).
  12. Вертикальная синхронизация - в таком режиме максимальный фпс привязывается к частоте обновления монитора. На топовых и средних видеокартах позволяет экономить их ресурсы и создавать меньше шума, так как они меньше нагреваются.
  13. Размытие движения - сглаживает картинку при резком движении мыши. На фпс не много влияет.

Это был самый простой и доступный способ понизить фпс в Counter-Strike: Global Offensive. Ничего новаторского здесь нет, в отличии от того, что указано в видео ниже.

Если судить по информации на форумах и из статей в Интернете, то ATi хитрит с трилинейной фильтрацией текстур на новом графическом процессоре X800. Впрочем, находятся и яростно защищающие ATi. Вообще, подобные дискуссии напоминают нам скандал годовалой давности, связанный с nVidia.

Поводом для столь горячего обсуждения стала статья на немецком сайте Computerbase. В ней было показано, как ATi использует оптимизированную трилинейную фильтрацию текстур, часто называемую "брилинейной" (brilinear) из-за смеси билинейной и трилинейной фильтраций, в графических процессорах Radeon 9600 и X800. Новость действительно стала ошеломляющей, ведь ATi всегда твердила о использовании настоящей трилинейной фильтрации.

Но как ситуация выглядит на самом деле? Это - оптимизация, хитрость или просто разумное решение? Чтобы судить, нам необходимо углубиться в технологии различных способов фильтрации. И первая часть статьи будет посвящена именно этому, причём, некоторые технологии мы изложим весьма упрощённо, чтобы уложиться в несколько страниц. Итак, давайте взглянем на базовые и принципиальные функции фильтрации.

Будет ли продолжение? Возможно, поскольку спор по поводу недавно открытой брилинейной фильтрации на картах Radeon 9600 и X800 не утихает. ATi следует отдать должное за то, что качество картинки карт визуально не страдает из-за этой фильтрации. По крайней мере, у нас нет примеров, говорящих об обратном. Пока брилинейная фильтрация проявляет себя при искусственно созданных лабораторных условиях. В то же время, ATi не позволяет включить полную трилинейную фильтрацию для упомянутых карт, будь она адаптивной или нет. Из-за новой фильтрации значения производительности в тестах не демонстрируют всего настоящего потенциала X800, поскольку значения FPS получены после оптимизации, влияние которой на скорость оценить сложно. Да и слово "адаптивная" оставляет горькое послевкусие. ATi не предоставила нам информацию о механизме работы драйвера и много раз заявляла, что карта даёт полную трилинейную фильтрацию. Лишь после упомянутого разоблачения ATi признала, что фильтрация оптимизирована. Будем надеяться, что в других местах драйвера подобной "адаптивности" нет.

Впрочем, производители медленно, но уверенно, двигаются к тому моменту, когда уровень терпимости будет преодолён. "Адаптивность" или определение запускаемого приложения не позволяют тестовым программам показать действительную производительность карты в играх. Качество картинки в игре может отличаться от одного драйвера к другому. Производители могут свободно развлекаться с драйвером, в зависимости от того, какая производительность нужна отделу маркетинга на данный момент. Ну, а право потребителя знать, что он, собственно, покупает, здесь уже никого не интересует. Всё это оставлено средствам массовой информации - пусть они выполняют свою образовательную миссию. И трюки с фильтрацией, которые мы обсудили в нашей статье, являются лишь самыми известными такими случаями. Что ещё скрыто от нашего внимания, остаётся лишь догадываться.

Каждый производитель решает сам, какой уровень качества изображения он будет обеспечивать стандартно. Однако производителям следует документировать используемые оптимизации, особенно если они скрыты от известных тестов, как в свежем примере с ATi. Решение очевидно: дайте возможность выключать оптимизации! Тогда потребитель сможет сам решать, что ему важнее - больше FPS или лучшее качество. На Microsoft, как на третейского судью, рассчитывать тоже не приходится. Тесты WHQL не позволяют определить многие вещи, да и их можно легко обойти: значение слова "адаптивная" вам знакомо?

Известные на сегодня оптимизации фильтрации
ATi nVidia
Трилинейная
оптимизация
R9600
X800
GF FX5xxx
(GF 6xxx)*
Угловая оптимизация
анизотропной фильтрации
R9xxx
X800
GF 6xxx
Адаптивная
анизотропная фильтрация
R9xxx
X800
GF FX5xxx
GF 6xxx
Оптимизация ступени R9xxx
X800
GF FX5xxx
Оптимизация LOD R9xxx
X800(?)

В целом, подобные дискуссии имеют свои преимущества: покупатели и, возможно, OEM-клиенты начинают прислушиваться к проблеме. Мы не сомневаемся, что мания необузданных оптимизаций будет продолжаться. Однако в тёмном царстве появился луч света, что наглядно продемонстрировала nVidia со своей трилинейной оптимизацией. Будем надеяться и на следующие подобные шаги!



Рассказать друзьям