Как проверить, является ли число простым. Простые числа: история и факты

💖 Нравится? Поделись с друзьями ссылкой

Перебор делителей. По определению число n является простым лишь в том случае, если оно не делится без остатка на 2 и другие целые числа, кроме 1 и самого себя. Приведенная выше формула позволяет удалить ненужные шаги и сэкономить время: например, после проверки того, делится ли число на 3, нет необходимости проверять, делится ли оно на 9.

  • Функция floor(x) округляет число x до ближайшего целого числа, которое меньше или равно x.

Узнайте о модульной арифметике. Операция "x mod y" (mod является сокращением латинского слова "modulo", то есть “модуль”) означает "поделить x на y и найти остаток". Иными словами, в модульной арифметике по достижении определенной величины, которую называют модулем , числа вновь "превращаются" в ноль. Например, часы отсчитывают время с модулем 12: они показывают 10, 11 и 12 часов, а затем возвращаются к 1.

  • Во многих калькуляторах есть клавиша mod. В конце данного раздела показано, как вручную вычислять эту функцию для больших чисел.
  • Узнайте о подводных камнях малой теоремы Ферма. Все числа, для которых не выполняются условия теста, являются составными, однако остальные числа лишь вероятно относятся к простым. Если вы хотите избежать неверных результатов, поищите n в списке "чисел Кармайкла" (составных чисел, которые удовлетворяют данному тесту) и "псевдопростых чисел Ферма" (эти числа соответствуют условиям теста лишь при некоторых значениях a ).

    Если удобно, используйте тест Миллера-Рабина. Хотя данный метод довольно громоздок при вычислениях вручную, он часто используется в компьютерных программах. Он обеспечивает приемлемую скорость и дает меньше ошибок, чем метод Ферма. Составное число не будет принято за простое, если провести расчеты для более ¼ значений a . Если вы случайным способом выберете различные значения a и для всех них тест даст положительный результат, можно с достаточно высокой долей уверенности считать, что n является простым числом.

  • Для больших чисел используйте модульную арифметику. Если у вас под рукой нет калькулятора с функцией mod или калькулятор не рассчитан на операции с такими большими числами, используйте свойства степеней и модульную арифметику, чтобы облегчить вычисления. Ниже приведен пример для 3 50 {\displaystyle 3^{50}} mod 50:

    • Перепишите выражение в более удобном виде: mod 50. При расчетах вручную могут понадобиться дальнейшие упрощения.
    • (3 25 ∗ 3 25) {\displaystyle (3^{25}*3^{25})} mod 50 = mod 50 mod 50) mod 50. Здесь мы учли свойство модульного умножения.
    • 3 25 {\displaystyle 3^{25}} mod 50 = 43.
    • (3 25 {\displaystyle (3^{25}} mod 50 ∗ 3 25 {\displaystyle *3^{25}} mod 50) mod 50 = (43 ∗ 43) {\displaystyle (43*43)} mod 50.
    • = 1849 {\displaystyle =1849} mod 50.
    • = 49 {\displaystyle =49} .
  • В статье рассматриваются понятия простых и составных чисел. Даются определения таких чисел с примерами. Приводим доказательство того, что количество простых чисел неограниченно и произведем запись в таблицу простых чисел при помощи метода Эратосфена. Будут приведены доказательства того, является ли число простым или составным.

    Yandex.RTB R-A-339285-1

    Простые и составные числа – определения и примеры

    Простые и составные числа относят к целым положительным. Они обязательно должны быть больше единицы. Делители также подразделяют на простые и составные. Чтобы понимать понятие составных чисел, необходимо предварительно изучить понятия делителей и кратных.

    Определение 1

    Простыми числами называют целые числа, которые больше единицы и имеют два положительных делителя, то есть себя и 1 .

    Определение 2

    Составными числами называют целые числа, которые больше единицы и имеют хотя бы три положительных делителя.

    Единица не является ни простым ни составным числом. Она имеет только один положительный делитель, поэтому отличается от всех других положительных чисел. Все целые положительные числа называют натуральными, то есть используемые при счете.

    Определение 3

    Простые числа – это натуральные числа, имеющие только два положительных делителя.

    Определение 4

    Составное число – это натуральное число, имеющее более двух положительных делителей.

    Любое число, которое больше 1 является либо простым, либо составным. Из свойства делимости имеем, что 1 и число а всегда будут делителями для любого числа а, то есть оно будет делиться само на себя и на 1 . Дадим определение целых чисел.

    Определение 5

    Натуральные числа, которые не являются простыми, называют составными.

    Простые числа: 2 , 3 , 11 , 17 , 131 , 523 . Они делятся только сами на себя и на 1 . Составные числа: 6 , 63 , 121 , 6697 . То есть число 6 можно разложить на 2 и 3 , а 63 на 1 , 3 , 7 , 9 , 21 , 63 , а 121 на 11 , 11 , то есть его делители будут 1 , 11 , 121 . Число 6697 разложится на 37 и 181 . Заметим, что понятия простых чисел и взаимно простых чисел – разные понятия.

    Для того, чтобы было проще использовать простые числа, необходимо использовать таблицу:

    Таблица для всех существующих натуральных чисел нереальна, так как их существует бесконечное множество. Когда числа достигают размеров 10000 или 1000000000 , тогда следует задуматься об использовании решета Эратосфена.

    Рассмотрим теорему, которая объясняет последнее утверждение.

    Теорема 1

    Наименьший положительный и отличный от 1 делитель натурального числа, большего единицы, является простым числом.

    Доказательство 1

    Возьмем, что а является натуральным числом, которое больше 1 , b является наименьшим отличным от единицы делителем для числа а. Следует доказать, что b является простым числом при помощи метода противного.

    Допустим, что b – составное число. Отсюда имеем, что есть делитель для b , который отличен от 1 как и от b . Такой делитель обозначается как b 1 . Необходимо, чтобы условие 1 < b 1 < b было выполнено.

    Из условия видно, что а делится на b , b делится на b 1 , значит, понятие делимости выражается таким образом: a = b · q и b = b 1 · q 1 , откуда a = b 1 · (q 1 · q) , где q и q 1 являются целыми числами. По правилу умножения целых чисел имеем, что произведение целых чисел – целое число с равенством вида a = b 1 · (q 1 · q) . Видно, что b 1 – это делитель для числа а. Неравенство 1 < b 1 < b не соответствует, потому как получим, что b является наименьшим положительным и отличным от 1 делителем а.

    Теорема 2

    Простых чисел бесконечно много.

    Доказательство 2

    Предположительно возьмем конечное количество натуральных чисел n и обозначим как p 1 , p 2 , … , p n . Рассмотрим вариант нахождения простого числа, отличного от указанных.

    Примем на рассмотрение число р, которое равняется p 1 , p 2 , … , p n + 1 . Оно не равняется каждому из чисел, соответствующих простым числам вида p 1 , p 2 , … , p n . Число р является простым. Тогда считается, что теорема доказана. Если оно составное, тогда нужно принять обозначение p n + 1 и показать несовпадение делителя ни с одним из p 1 , p 2 , … , p n .

    Если это было бы не так, тогда, исходя из свойства делимости произведения p 1 , p 2 , … , p n , получим, что оно делилось бы на p n + 1 . Заметим, что на выражение p n + 1 делится число р равняется сумме p 1 , p 2 , … , p n + 1 . Получим, что на выражение p n + 1 должно делиться второе слагаемое этой суммы, которое равняется 1 , но это невозможно.

    Видно, что может быть найдено любое простое число среди любого количества заданных простых чисел. Отсюда следует, что простых чисел бесконечно много.

    Так как простых чисел очень много, то таблицы ограничивают числами 100 , 1000 , 10000 и так далее.

    При составлении таблицы простых чисел следует учитывать то, что для такой задачи необходима последовательная проверка чисел, начиная с 2 до 100 . При отсутствии делителя оно фиксируется в таблицу, если оно составное, то в таблицу не заносится.

    Рассмотрим пошагово.

    Если начать с числа 2 , то оно имеет только 2 делителя: 2 и 1, значит, его можно занести в таблицу. Также и с числом 3 . Число 4 является составным, следует разложить его еще на 2 и 2 . Число 5 является простым, значит, можно зафиксировать в таблице. Так выполнять вплоть до числа 100 .

    Данный способ неудобный и долгий. Таблицу составить можно, но придется потратить большое количество времени. Необходимо использовать признаки делимости, которые ускорят процесс нахождения делителей.

    Способ при помощи решета Эратосфена считают самым удобным. Рассмотрим на примере таблиц, приведенных ниже. Для начала записываются числа 2 , 3 , 4 , … , 50 .

    Теперь необходимо зачеркнуть все числа, которые кратны 2 . Произвести последовательное зачеркивание. Получим таблицу вида:

    Переходим к вычеркиванию чисел, кратных 5 . Получим:

    Вычеркиваем числа, кратные 7 , 11 . В конечном итоге таблица получает вид

    Перейдем к формулировке теоремы.

    Теорема 3

    Наименьший положительный и отличный от 1 делитель основного числа а не превосходит a , где a является арифметическим корнем заданного числа.

    Доказательство 3

    Необходимо обозначить b наименьший делитель составного числа а. Существует такое целое число q , где a = b · q , причем имеем, что b ≤ q . Недопустимо неравенство вида b > q , так как происходит нарушение условия. Обе части неравенства b ≤ q следует умножить на любое положительное число b , не равное 1 . Получаем, что b · b ≤ b · q , где b 2 ≤ a и b ≤ a .

    Из доказанной теоремы видно, что вычеркивание чисел в таблице приводит к тому, что необходимо начинать с числа, которое равняется b 2 и удовлетворяет неравенству b 2 ≤ a . То есть, если вычеркнуть числа, кратные 2 , то процесс начинается с 4 , а кратных 3 – с 9 и так далее до 100 .

    Составление такой таблицы при помощи теоремы Эратосфена говорит о том, что при вычеркивании всех составных чисел, останутся простые, которые не превосходят n . В примере, где n = 50 , у нас имеется, что n = 50 . Отсюда и получаем, что решето Эратосфена отсеивает все составные числа, которые по значению не больше значения корня из 50 . Поиск чисел производится при помощи вычеркивания.

    Перед решением необходимо выяснять, является ли число простым или составным. Зачастую используются признаки делимости. Рассмотрим это на ниже приведенных примере.

    Пример 1

    Доказать что число 898989898989898989 является составным.

    Решение

    Сумма цифр заданного числа равняется 9 · 8 + 9 · 9 = 9 · 17 . Значит, число 9 · 17 делится на 9 , исходя из признака делимости на 9 . Отсюда следует, что оно составное.

    Такие признаки не способны доказать простоту числа. Если нужна проверка, следует производить другие действия. Самый подходящий способ – это перебор чисел. В течение процесса можно найти простые и составные числа. То есть числа по значению не должны превосходить a . То есть число а необходимо разложить на простые множители. если это будет выполнено, тогда число а можно считать простым.

    Пример 2

    Определить составное или простое число 11723 .

    Решение

    Теперь необходимо найти все делители для числа 11723 . Необходимо оценить 11723 .

    Отсюда видим, что 11723 < 200 , то 200 2 = 40 000 , а 11 723 < 40 000 . Получаем, что делители для 11 723 меньше числа 200 .

    Для более точной оценки числа 11723 необходимо записать выражение 108 2 = 11 664 , а 109 2 = 11 881 , то 108 2 < 11 723 < 109 2 . Отсюда следует, что 11723 < 109 . Видно, что любое число, которое меньше 109 считается делителем для заданного числа.

    При разложении получим, что 2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 , 53 , 59 , 61 , 67 , 71 , 73 , 79 , 83 , 89 , 97 , 101 , 103 , 107 – это все простые числа. Весь данный процесс можно изобразить как деление столбиком. То есть разделить 11723 на 19 . Число 19 является одним из его множителей, так как получим деление без остатка. Изобразим деление столбиком:

    Отсюда следует, что 11723 является составным числом, потому как кроме себя и 1 имеет делитель 19 .

    Ответ: 11723 является составным числом.

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

    Ответ Ильи корректный, но не очень подробный. В 18 веке, кстати, единицу ещё считали простым числом. Например, такие крупные математики как Эйлер и Гольдбах. Гольдбах автор одной из семи задач тысячелетия - гипотезы Гольдбаха. В изначальной формулировке утверждается, что всякое чётное число представимо в виде суммы двух простых чисел. Причём изначально 1 учитывалась как простое число, и мы видим такое: 2 = 1+1. Это наименьший пример, удовлетворяющий исходной формулировке гипотезы. Позднее её подправили, и формулировка приобрела современный вид: "всякое чётное число, начиная с 4, представимо в виде суммы двух простых чисел".

    Вспомним определение. Простым является натуральное число р, имеющее только 2 различных натуральных делителя: само р и 1. Следствие из определения: у простого числа р только один простой делитель - само р.

    Теперь предположим, что 1 простое число. По определению у простого числа только один простой делитель - оно само. Тогда получится, что любое простое число, большее 1, делится на отличающееся от него простое число (на 1). Но два различных простых числа не могут делиться друг на друга, т.к. иначе это не простые, а составные числа, и это противоречит определению. При таком подходе получается, что существует только 1 простое число - сама единица. Но это абсурд. Следовательно, 1 не простое число.

    1, равно как и 0, образуют другой класс чисел - класс нейтральных элементов относительно n-нарных операций в каком-то подмножестве алгебраического поля. При этом относительно операции сложения 1 является также образующим элементом для кольца целых чисел.

    При таком рассмотрении не трудно обнаружить аналоги простых чисел в других алгебраических структурах. Предположим, что у нас есть мультипликативная группа, образованная из степеней 2, начиная с 1: 2, 4, 8, 16, ... и т.д. 2 выступает здесь образующим элементом. Простым числом в этой группе назовём число, большее наименьшего элемента, и делящееся только на себя и на наименьший элемент. В нашей группе такими свойствами обладает только 4. Всё. Больше простых чисел в нашей группе не существует.

    Если бы 2 тоже была простым числом в нашей группе, то см. первый абзац, - снова получилось бы, что простым числом является только 2.

    простое число

    натуральное число, большее, чем единица, и не имеющее других делителей, кроме самого себя и единицы: 2, 3, 5, 7, 11, 13... Число простых чисел бесконечно.

    Простое число

    целое положительное число, большее, чем единица, не имеющее других делителей, кроме самого себя и единицы: 2, 3, 5, 7, 11, 13,... Понятие П. ч. является основным при изучении делимости натуральных (целых положительных) чисел; именно, основная теорема теории делимости устанавливает, что всякое целое положительное число, кроме 1, единственным образом разлагается в произведении П. ч. (порядок сомножителей при этом не принимается во внимание). П. ч. бесконечно много (это предложение было известно ещё древнегреческим математикам, его доказательство имеется в 9-й книге «Начал» Евклида). Вопросы делимости натуральных чисел, а следовательно, вопросы, связанные с П. ч., имеют важное значение при изучении групп; в частности, строение группы с конечным числом элементов тесно связано с тем, каким образом это число элементов (порядок группы) разлагается на простые множители. В теории алгебраических чисел рассматриваются вопросы делимости целых алгебраических чисел; понятия П. ч. оказалось недостаточным для построения теории делимости ≈ это привело к созданию понятия идеала. П. Г. Л. Дирихле в 1837 установил, что в арифметической прогрессии а + bx при х = 1, 2,... с целыми взаимно простыми а и b содержится бесконечно много П. ч. Выяснение распределения П. ч. в натуральном ряде чисел является весьма трудной задачей чисел теории. Она ставится как изучение асимптотического поведения функции p(х), обозначающей число П. ч., не превосходящих положительного числа х. Первые результаты в этом направлении принадлежат П. Л. Чебышеву, который в 1850 доказал, что имеются такие две такие постоянные а и А, что ═< p(x) < ═при любых x ³ 2 [т. е., что p(х) растет, как функция ]. Хронологически следующим значительным результатом, уточняющим теорему Чебышева, является т. н. асимптотический закон распределения П. ч. (Ж. Адамар, 1896, Ш. Ла Валле Пуссен, 1896), заключающийся в том, что предел отношения p(х) к ═равен

      В дальнейшем значительные усилия математиков направлялись на уточнение асимптотического закона распределения П. ч. Вопросы распределения П. ч. изучаются и элементарными методами, и методами математического анализа. Особенно плодотворным является метод, основанный на использовании тождества

      (произведение распространяется на все П. ч. р = 2, 3,...), впервые указанного Л. Эйлером; это тождество справедливо при всех комплексных s с вещественной частью, большей единицы. На основании этого тождества вопросы распределения П. ч. приводятся к изучению специальной функции ≈ дзета-функции x(s), определяемой при Res > 1 рядом

      Эта функция использовалась в вопросах распределения П. ч. при вещественных s Чебышевым; Б. Риман указал на важность изучения x(s) при комплексных значениях s. Риман высказал гипотезу о том, что все корни уравнения x(s) = 0, лежащие в правой полуплоскости, имеют вещественную часть, равную 1/

      Эта гипотеза до настоящего времени (1975) не доказана; её доказательство дало бы весьма много в решении вопроса о распределении П. ч. Вопросы распределения П. ч. тесно связаны с Гольдбаха проблемой, с не решенной ещё проблемой «близнецов» и другими проблемами аналитической теории чисел. Проблема «близнецов» состоит в том, чтобы узнать, конечно или бесконечно число П. ч., разнящихся на 2 (таких, например, как 11 и 13). Таблицы П. ч., лежащих в пределах первых 11 млн. натуральных чисел, показывают наличие весьма больших «близнецов» (например, 10006427 и 10006429), однако это не является доказательством бесконечности их числа. За пределами составленных таблиц известны отдельные П. ч., допускающие простое арифметическое выражение [например, установлено (1965), что 211213 ≈1 есть П. ч.; в нём 3376 цифр].

      Лит.: Виноградов И. М., Основы теории чисел, 8 изд., М., 1972; Хассе Г., Лекции по теории чисел, пер. с нем., М., 1953; Ингам А. Е., Распределение простых чисел, пер. с англ., М. ≈ Л., 1936; Прахар К., Распределение простых чисел, пер. с нем., М., 1967; Трост Э., Простые числа, пер, с нем., М., 1959.

    Википедия

    Простое число

    Просто́е число́ - натуральное число, имеющее ровно два различных натуральных делителя - и самого себя. Другими словами, число x является простым, если оно больше 1 и при этом делится без остатка только на 1 и на x . К примеру, 5 - простое число, а 6 является составным числом, так как, помимо 1 и 6, также делится на 2 и на 3.

    Натуральные числа, которые больше единицы и не являются простыми, называются составными. Таким образом, все натуральные числа разбиваются на три класса: единицу. Изучением свойств простых чисел занимается теория чисел. В теории колец простым числам соответствуют неприводимые элементы.

    Последовательность простых чисел начинается так:

    2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 , 53 , 59 , 61 , 67 , 71 , 73 , 79 , 83 , 89 , 97 , 101 , 103 , 107 , 109 , 113 , 127 , 131 , 137 , 139 , 149 , 151 , 157 , 163 , 167 , 173 , 179 , 181 , 191 , 193 , 197 , 199 …

    Простые числа представляют собой одно из самых интересных математических явлений, которое привлекает к себе внимание ученых и простых граждан на протяжении уже более двух тысячелетий. Несмотря на то, что сейчас мы живем в век компьютеров и самых современных информационных программ, многие загадки простых чисел не решены до сих пор, есть даже такие, к которым ученые не знают, как подступиться.

    Простые числа - это, как известно еще из курса элементарной арифметики, те которые делятся без остатка только на единицу и самое себя. Кстати, если натуральное число делится, кроме выше перечисленных, еще на какое-либо число, то оно именуется составным. Одна из самых знаменитых теорем гласит, что любое составное число может быть представлено в виде единственно возможного произведения простых чисел.

    Несколько любопытных фактов. Во-первых, единица является уникальной в том плане, что, по сути, не принадлежит ни к простым, ни к составным числам. В то же время в научной среде все же принято относить ее именно к первой группе, так как формально она полностью удовлетворяет ее требованиям.

    Во-вторых, единственным четным числом, затесавшимся в группу «простые числа» является, естественно, двойка. Любое другое четное число сюда попасть попросту не может, так как уже по определению, кроме себя и единицы, делится еще и на два.

    Простые числа, список которых, как было указано выше, можно начинать с единицы, представляют собой бесконечный ряд, такой же бесконечный, как и ряд натуральных чисел. Опираясь на основную теорему арифметики, можно прийти к выводу, что простые числа никогда не прерываются и никогда не заканчиваются, так как в противном случае неизбежно прервался бы и ряд натуральных чисел.

    Простые числа не появляются в натуральном ряду беспорядочно, как это может показаться на первый взгляд. Внимательно проанализировав их, можно сразу заметить несколько особенностей, наиболее любопытные из которых связаны с так называемыми числами-«близнецами». Называют их так потому, что каким-то непостижимым образом они оказались по соседству друг с другом, разделенные только четным разграничителем (пять и семь, семнадцать и девятнадцать).

    Если внимательно к ним присмотреться, то можно заметить, что сумма этих чисел всегда кратна трем. Более того, при делении на тройку левого собрата в остатке всегда остается двойка, а правого - единица. Кроме того, само распределение этих чисел по натуральному ряду можно спрогнозировать, если представить весь этот ряд в виде колебательных синусоид, основные точки которых образуются при делении чисел на три и два.

    Простые числа являются не только объектом пристального рассмотрения со стороны математиков всего мира, но уже давно и успешно используются в составлении различных рядов чисел, что является основой, в том числе, для шифрографии. При этом следует признать, что огромное количество загадок, связанных с этими замечательными элементами, все еще ждут своих разгадок, многие вопросы имеют не только философское, но и практичное значение.



    Рассказать друзьям