Применение метода математической индукции к решению задач на делимость натуральных чисел. Принцип математической индукции

💖 Нравится? Поделись с друзьями ссылкой

Метод математической индукции

Вступление

Основная часть

  1. Полная и неполная индукция
  2. Принцип математической индукции
  3. Метод математической индукции
  4. Решение примеров
  5. Равенства
  6. Деление чисел
  7. Неравенства

Заключение

Список использованной литературы

Вступление

В основе всякого математического исследования лежат дедуктивный и индуктивный методы. Дедуктивный метод рассуждений - это рассуждение от общего к частному, т.е. рассуждение, исходным моментом которого является общий результат, а заключительным моментом – частный результат. Индукция применяется при переходе от частных результатов к общим, т.е. является методом, противоположным дедуктивному.

Метод математической индукции можно сравнить с прогрессом. Мы начинаем с низшего, в результате логического мышления приходим к высшему. Человек всегда стремился к прогрессу, к умению развивать свою мысль логически, а значит, сама природа предначертала ему размышлять индуктивно.

Хотя и выросла область применения метода математической индукции, в школьной программе ему отводится мало времени. Ну, скажите, что полезного человеку принесут те два-три урока, за которые он услышит пять слов теории, решит пять примитивных задач, и, в результате получит пятёрку за то, что он ничего не знает.

А ведь это так важно - уметь размышлять индуктивно.

Основная часть

По своему первоначальному смыслу слово “индукция” применяется к рассуждениям, при помощи которых получают общие выводы, опираясь на ряд частных утверждений. Простейшим методом рассуждений такого рода является полная индукция. Вот пример подобного рассуждения.

Пусть требуется установить, что каждое натуральное чётное число n в пределах 4< n < 20 представимо в виде суммы двух простых чисел. Для этого возьмём все такие числа и выпишем соответствующие разложения:

4=2+2; 6=3+3; 8=5+3; 10=7+3; 12=7+5;

14=7+7; 16=11+5; 18=13+5; 20=13+7.

Эти девять равенств показывают, что каждое из интересующих нас чисел действительно представляется в виде суммы двух простых слагаемых.

Таким образом, полная индукция заключается в том, что общее утверждение доказывается по отдельности в каждом из конечного числа возможных случаев.

Иногда общий результат удаётся предугадать после рассмотрения не всех, а достаточно большого числа частных случаев (так называемая неполная индукция).

Результат, полученный неполной индукцией, остается, однако, лишь гипотезой, пока он не доказан точным математическим рассуждением, охватывающим все частные случаи. Иными словами, неполная индукция в математике не считается законным методом строгого доказательства, но является мощным методом открытия новых истин.

Пусть, например, требуется найти сумму первых n последовательных нечётных чисел. Рассмотрим частные случаи:

1+3+5+7+9=25=5 2

После рассмотрения этих нескольких частных случаев напрашивается следующий общий вывод:

1+3+5+…+(2n-1)=n 2

т.е. сумма n первых последовательных нечётных чисел равна n 2

Разумеется, сделанное наблюдение ещё не может служить доказательством справедливости приведённой формулы.

Полная индукция имеет в математике лишь ограниченное применение. Многие интересные математические утверждения охватывают бесконечное число частных случаев, а провести проверку для бесконечного числа случаев мы не в состоянии. Неполная же индукция часто приводит к ошибочным результатам.

Во многих случаях выход из такого рода затруднений заключается в обращении к особому методу рассуждений, называемому методом математической индукции. Он заключается в следующем.

Пусть нужно доказать справедливость некоторого утверждения для любого натурального числа n (например нужно доказать, что сумма первых n нечётных чисел равна n 2). Непосредственная проверка этого утверждения для каждого значения n невозможна, поскольку множество натуральных чисел бесконечно. Чтобы доказать это утверждение, проверяют сначала его справедливость для n=1. Затем доказывают, что при любом натуральном значении k из справедливости рассматриваемого утверждения при n=k вытекает его справедливость и при n=k+1.

Тогда утверждение считается доказанным для всех n. В самом деле, утверждение справедливо при n=1. Но тогда оно справедливо и для следующего числа n=1+1=2. Из справедливости утверждения для n=2 вытекает его справедливость для n=2+

1=3. Отсюда следует справедливость утверждения для n=4 и т.д. Ясно, что, в конце концов, мы дойдём до любого натурального числа n. Значит, утверждение верно для любого n.

Обобщая сказанное, сформулируем следующий общий принцип.

Принцип математической индукции.

Если предложение А(n), зависящее от натурального числа n, истинно для n=1 и из того, что оно истинно для n=k (где k-любое натуральное число), следует, что оно истинно и для следующего числа n=k+1, то предположение А(n) истинно для любого натурального числа n.

В ряде случаев бывает нужно доказать справедливость некоторого утверждения не для всех натуральных чисел, а лишь для n>p, где p-фиксированное натуральное число. В этом случае принцип математической индукции формулируется следующим образом.

Если предложение А(n) истинно при n=p и если А(k)ÞА(k+1) для любого k>p, то предложение А(n) истинно для любого n>p.

Доказательство по методу математической индукции проводиться следующим образом. Сначала доказываемое утверждение проверяется для n=1, т.е. устанавливается истинность высказывания А(1). Эту часть доказательства называют базисом индукции. Затем следует часть доказательства, называемая индукционным шагом. В этой части доказывают справедливость утверждения для n=k+1 в предположении справедливости утверждения для n=k (предположение индукции), т.е. доказывают, что А(k)ÞA(k+1).

Доказать, что 1+3+5+…+(2n-1)=n 2 .

Решение: 1) Имеем n=1=1 2 . Следовательно,

утверждение верно при n=1, т.е. А(1) истинно.

2) Докажем, что А(k)ÞA(k+1).

Пусть k-любое натуральное число и пусть утверж-дение справедливо для n=k, т.е.

1+3+5+…+(2k-1)=k 2 .

Докажем, что тогда утверждение справедливо и для следующего натурального числа n=k+1, т.е. что

1+3+5+…+(2k+1)=(k+1) 2 .

В самом деле,

1+3+5+…+(2k-1)+(2k+1)=k 2 +2k+1=(k+1) 2 .

Итак, А(k)ÞА(k+1). На основании принципа математической индукции заключаем, что предпо-ложение А(n) истинно для любого nÎN.

Доказать, что

1+х+х 2 +х 3 +…+х n =(х n+1 -1)/(х-1), где х¹1

Решение: 1) При n=1 получаем

1+х=(х 2 -1)/(х-1)=(х-1)(х+1)/(х-1)=х+1

следовательно, при n=1 формула верна; А(1) ис-тинно.

2) Пусть k-любое натуральное число и пусть формула верна при n=k, т.е.

1+х+х 2 +х 3 +…+х k =(х k+1 -1)/(х-1).

Докажем, что тогда выполняется равенство

1+х+х 2 +х 3 +…+х k +x k+1 =(x k+2 -1)/(х-1).

В самом деле

1+х+х 2 +x 3 +…+х k +x k+1 =(1+x+x 2 +x 3 +…+x k)+x k+1 =

=(x k+1 -1)/(x-1)+x k+1 =(x k+2 -1)/(x-1).

Итак, А(k)ÞA(k+1). На основании принципа математической индукции заключаем, что форму-ла верна для любого натурального числа n.

Доказать, что число диагоналей выпуклого n-угольника равно n(n-3)/2.

Решение: 1) При n=3 утверждение спра-

А 3 ведливо, ибо в треугольнике

 А 3 =3(3-3)/2=0 диагоналей;

А 2 А(3) истинно.

2) Предположим, что во всяком

выпуклом k-угольнике имеет-

А 1 ся А k =k(k-3)/2 диагоналей.

А k Докажем, что тогда в выпуклом

(k+1)-угольнике число

диагоналей А k+1 =(k+1)(k-2)/2.

Пусть А 1 А 2 А 3 …A k A k+1 -выпуклый (k+1)-уголь-ник. Проведём в нём диагональ A 1 A k . Чтобы под-считать общее число диагоналей этого (k+1)-уголь-ника нужно подсчитать число диагоналей в k-угольнике A 1 A 2 …A k , прибавить к полученному числу k-2, т.е. число диагоналей (k+1)-угольника, исходящих из вершины А k+1 , и, кроме того, следует учесть диагональ А 1 А k .

Таким образом,

 k+1 = k +(k-2)+1=k(k-3)/2+k-1=(k+1)(k-2)/2.

Итак, А(k)ÞA(k+1). Вследствие принципа математической индукции утверждение верно для любого выпуклого n-угольника.

Доказать, что при любом n справедливо утвер-ждение:

1 2 +2 2 +3 2 +…+n 2 =n(n+1)(2n+1)/6.

Решение: 1) Пусть n=1, тогда

Х 1 =1 2 =1(1+1)(2+1)/6=1.

Значит, при n=1 утверждение верно.

2) Предположим, что n=k

Х k =k 2 =k(k+1)(2k+1)/6.

3) Рассмотрим данное утвержде-ние при n=k+1

X k+1 =(k+1)(k+2)(2k+3)/6.

X k+1 =1 2 +2 2 +3 2 +…+k 2 +(k+1) 2 =k(k+1)(2k+1)/6+ +(k+1) 2 =(k(k+1)(2k+1)+6(k+1) 2)/6=(k+1)(k(2k+1)+

6(k+1))/6=(k+1)(2k 2 +7k+6)/6=(k+1)(2(k+3/2)(k+

2))/6=(k+1)(k+2)(2k+3)/6.

Мы доказали справедливость равенства и при n=k+1, следовательно, в силу метода математиче-ской индукции, утверждение верно для любого на-турального n.

Доказать, что для любого натурального n спра-ведливо равенство:

1 3 +2 3 +3 3 +…+n 3 =n 2 (n+1) 2 /4.

Решение: 1) Пусть n=1.

Тогда Х 1 =1 3 =1 2 (1+1) 2 /4=1.

Мы видим, что при n=1 утверждение верно.

2) Предположим, что равенство верно при n=k

X k =k 2 (k+1) 2 /4.

3) Докажем истинность этого ут-верждения для n=k+1, т.е.

Х k+1 =(k+1) 2 (k+2) 2 /4. X k+1 =1 3 +2 3 +…+k 3 +(k+1) 3 =k 2 (k+1) 2 /4+(k+1) 3 =(k 2 (k++1) 2 +4(k+1) 3)/4=(k+1) 2 (k 2 +4k+4)/4=(k+1) 2 (k+2) 2 /4.

Из приведённого доказательства видно, что ут-верждение верно при n=k+1, следовательно, равен-ство верно при любом натуральном n.

Доказать, что

((2 3 +1)/(2 3 -1))´((3 3 +1)/(3 3 -1))´…´((n 3 +1)/(n 3 -1))=3n(n+1)/2(n 2 +n+1), где n>2.

Решение: 1) При n=2 тождество выглядит: (2 3 +1)/(2 3 -1)=(3´2´3)/2(2 2 +2+1),

т.е. оно верно.

2) Предположим, что выражение верно при n=k

(2 3 +1)/(2 3 -1)´…´(k 3 +1)/(k 3 -1)=3k(k+1)/2(k 2 +k+1).

3) Докажем верность выражения при n=k+1.

(((2 3 +1)/(2 3 -1))´…´((k 3 +1)/(k 3 -1)))´(((k+1) 3 +

1)/((k+1) 3 -1))=(3k(k+1)/2(k 2 +k+1))´((k+2)((k+

1) 2 -(k+1)+1)/k((k+1) 2 +(k+1)+1))=3(k+1)(k+2)/2´

´((k+1) 2 +(k+1)+1).

Мы доказали справедливость равенства и при n=k+1, следовательно, в силу метода математиче-ской индукции, утверждение верно для любого n>2

Доказать, что

1 3 -2 3 +3 3 -4 3 +…+(2n-1) 3 -(2n) 3 =-n 2 (4n+3)

для любого натурального n.

Решение: 1) Пусть n=1, тогда

1 3 -2 3 =-1 3 (4+3); -7=-7.

2) Предположим, что n=k, тогда

1 3 -2 3 +3 3 -4 3 +…+(2k-1) 3 -(2k) 3 =-k 2 (4k+3).

3) Докажем истинность этого ут-верждения при n=k+1

(1 3 -2 3 +…+(2k-1) 3 -(2k) 3)+(2k+1) 3 -(2k+2) 3 =-k 2 (4k+3)+

+(2k+1) 3 -(2k+2) 3 =-(k+1) 3 (4(k+1)+3).

Доказана и справедливость равенства при n=k+1, следовательно утверждение верно для лю-бого натурального n.

Доказать верность тождества

(1 2 /1´3)+(2 2 /3´5)+…+(n 2 /(2n-1)´(2n+1))=n(n+1)/2(2n+1)

для любого натурального n.

1) При n=1 тождество верно 1 2 /1´3=1(1+1)/2(2+1).

2) Предположим, что при n=k

(1 2 /1´3)+…+(k 2 /(2k-1)´(2k+1))=k(k+1)/2(2k+1).

3) Докажем, что тождество верно при n=k+1.

(1 2 /1´3)+…+(k 2 /(2k-1)(2k+1))+(k+1) 2 /(2k+1)(2k+3)=(k(k+1)/2(2k+1))+((k+1) 2 /(2k+1)(2k+3))=((k+1)/(2k+1))´((k/2)+((k+1)/(2k+3)))=(k+1)(k+2)´ (2k+1)/2(2k+1)(2k+3)=(k+1)(k+2)/2(2(k+1)+1).

Из приведённого доказательства видно, что ут-верждение верно при любом натуральном n.

Доказать, что (11 n+2 +12 2n+1) делится на 133 без остатка.

Решение: 1) Пусть n=1, тогда

11 3 +12 3 =(11+12)(11 2 -132+12 2)=23´133.

Но (23´133) делится на 133 без остатка, значит при n=1 утверждение верно; А(1) истинно.

2) Предположим, что (11 k+2 +12 2k+1) делится на 133 без остатка.

3) Докажем, что в таком случае

(11 k+3 +12 2k+3) делится на 133 без остатка. В самом деле 11 k+3 +12 2л+3 =11´11 k+2 +12 2´ 12 2k+1 =11´11 k+2 +

+(11+133)´12 2k+1 =11(11 k+2 +12 2k+1)+133´12 2k+1 .

Полученная сумма делится на 133 без остатка, так как первое её слагаемое делится на 133 без ос-татка по предположению, а во втором одним из множителей выступает 133. Итак, А(k)ÞА(k+1). В силу метода математической индукции утвержде-ние доказано.

Доказать, что при любом n 7 n -1 делится на 6 без остатка.

Решение: 1) Пусть n=1, тогда Х 1 =7 1 -1=6 де-лится на 6 без остатка. Значит при n=1 утвержде-ние верно.

2) Предположим, что при n=k

7 k -1 делится на 6 без остатка.

3) Докажем, что утверждение справедливо для n=k+1.

X k+1 =7 k+1 -1=7´7 k -7+6=7(7 k -1)+6.

Первое слагаемое делится на 6, поскольку 7 k -1 делится на 6 по предположению, а вторым слага-емым является 6. Значит 7 n -1 кратно 6 при любом натуральном n. В силу метода математической ин-дукции утверждение доказано.

Доказать, что 3 3n-1 +2 4n-3 при произвольном на-туральном n делится на 11.
Решение: 1) Пусть n=1, тогда

Х 1 =3 3-1 +2 4-3 =3 2 +2 1 =11 делится на 11 без остат-ка. Значит, при n=1 утверждение верно.

2) Предположим, что при n=k

X k =3 3k-1 +2 4k-3 делится на 11 без остатка.

3) Докажем, что утверждение верно для n=k+1.

X k+1 =3 3(k+1)-1 +2 4(k+1)-3 =3 3k+2 +2 4k+1 =3 3´ 3 3k-1 +2 4´ 2 4k-3 =

27´3 3k-1 +16´2 4k-3 =(16+11)´3 3k-1 +16´2 4k-3 =16´3 3k-1 +

11´3 3k-1 +16´2 4k-3 =16(3 3k-1 +2 4k-3)+11´3 3k-1 .

Первое слагаемое делится на 11 без остатка, поскольку 3 3k-1 +2 4k-3 делится на 11 по предположе-нию, второе делится на 11, потому что одним из его множителей есть число 11. Значит и сумма де-лится на 11 без остатка при любом натуральном n. В силу метода математической индукции утвер-ждение доказано.

Доказать, что 11 2n -1 при произвольном нату-ральном n делится на 6 без остатка.

Решение: 1) Пусть n=1, тогда 11 2 -1=120 делится на 6 без остатка. Значит при n=1 утвержде-ние верно.

2) Предположим, что при n=k

11 2k -1 делится на 6 без остатка.

11 2(k+1) -1=121´11 2k -1=120´11 2k +(11 2k -1).

Оба слагаемых делятся на 6 без остатка: пер-вое содержит кратное 6-ти число 120, а второе де-лится на 6 без остатка по предположению. Значит и сумма делится на 6 без остатка. В силу метода математической индукции утверждение доказано.

Доказать, что 3 3n+3 -26n-27 при произвольном натуральном n делится на 26 2 (676) без остатка.

Решение: Предварительно докажем, что 3 3n+3 -1 делится на 26 без остатка.

  1. При n=0
  2. 3 3 -1=26 делится на 26

  3. Предположим, что при n=k
  4. 3 3k+3 -1 делится на 26

  5. Докажем, что утверждение

верно при n=k+1.

3 3k+6 -1=27´3 3k+3 -1=26´3 3л+3 +(3 3k+3 -1) –делится на 26

Теперь проведём доказательство утвер-ждения, сформулированного в условии задачи.

1) Очевидно, что при n=1 утвер-ждение верно

3 3+3 -26-27=676

2) Предположим, что при n=k

выражение 3 3k+3 -26k-27 делится на 26 2 без остатка.

3) Докажем, что утверждение верно при n=k+1

3 3k+6 -26(k+1)-27=26(3 3k+3 -1)+(3 3k+3 -26k-27).

Оба слагаемых делятся на 26 2 ; первое делится на 26 2 , потому что мы доказали делимость на 26 выражения, стоящего в скобках, а второе делится по предположению индукции. В силу метода мате-матической индукции утверждение доказано.

Доказать, что если n>2 и х>0, то справедливо неравенство

(1+х) n >1+n´х.

Решение: 1) При n=2 неравенство справед-ливо, так как

(1+х) 2 =1+2х+х 2 >1+2х.

Значит, А(2) истинно.

2) Докажем, что А(k)ÞA(k+1), если k> 2. Предположим, что А(k) истинно, т.е., что справедливо неравенство

(1+х) k >1+k´x. (3)

Докажем, что тогда и А(k+1) истинно, т.е., что справедливо неравенство

(1+x) k+1 >1+(k+1)´x.

В самом деле, умножив обе части неравенства (3) на положительное число 1+х, получим

(1+x) k+1 >(1+k´x)(1+x).

Рассмотрим правую часть последнего неравен-

ства; имеем

(1+k´x)(1+x)=1+(k+1)´x+k´x 2 >1+(k+1)´x.

В итоге получаем, что

(1+х) k+1 >1+(k+1)´x.

Итак, А(k)ÞA(k+1). На основании принципа математической индукции можно утверждать, что неравенство Бернулли справедливо для любого

Доказать, что справедливо неравенство

(1+a+a 2) m > 1+m´a+(m(m+1)/2)´a 2 при а> 0.

Решение: 1) При m=1

(1+а+а 2) 1 > 1+а+(2/2)´а 2 обе части равны.

2) Предположим, что при m=k

(1+a+a 2) k >1+k´a+(k(k+1)/2)´a 2

3) Докажем, что при m=k+1 не-равенство верно

(1+a+a 2) k+1 =(1+a+a 2)(1+a+a 2) k >(1+a+a 2)(1+k´a+

+(k(k+1)/2)´a 2)=1+(k+1)´a+((k(k+1)/2)+k+1)´a 2 +

+((k(k+1)/2)+k)´a 3 +(k(k+1)/2)´a 4 > 1+(k+1)´a+

+((k+1)(k+2)/2)´a 2 .

Мы доказали справедливость неравенства при m=k+1, следовательно, в силу метода математиче-ской индукции, неравенство справедливо для лю-бого натурального m.

Доказать, что при n>6 справедливо неравенство

3 n >n´2 n+1 .

Решение: Перепишем неравенство в виде

  1. При n=7 имеем
  2. 3 7 /2 7 =2187/128>14=2´7

    неравенство верно.

  3. Предположим, что при n=k

3) Докажем верность неравен-ства при n=k+1.

3 k+1 /2 k+1 =(3 k /2 k)´(3/2)>2k´(3/2)=3k>2(k+1).

Так как k>7, последнее неравенство очевидно.

В силу метода математической индукции неравен-ство справедливо для любого натурального n.

Доказать, что при n>2 справедливо неравенство

1+(1/2 2)+(1/3 2)+…+(1/n 2)<1,7-(1/n).

Решение: 1) При n=3 неравенство верно

1+(1/2 2)+(1/3 2)=245/180<246/180=1,7-(1/3).

  1. Предположим, что при n=k

1+(1/2 2)+(1/3 2)+…+(1/k 2)=1,7-(1/k).

3) Докажем справедливость не-

равенства при n=k+1

(1+(1/2 2)+…+(1/k 2))+(1/(k+1) 2)<1,7-(1/k)+(1/(k+1) 2).

Докажем, что 1,7-(1/k)+(1/(k+1) 2)<1,7-(1/k+1)Û

Û(1/(k+1) 2)+(1/k+1)<1/kÛ(k+2)/(k+1) 2 <1/kÛ

Ûk(k+2)<(k+1) 2Û k 2 +2k

Последнее очевидно, а поэтому

1+(1/2 2)+(1/3 2)+…+(1/(k+1) 2)<1,7-(1/k+1).

В силу метода математической индукции не-равенство доказано.

Заключение

Вчастности изучив метод математической индукции, я повысил свои знания в этой облас-ти математики, а также научился решать задачи, которые раньше были мне не под силу.

В основном это были логические и занима-тельные задачи, т.е. как раз те, которые повы-шают интерес к самой математике как к науке. Решение таких задач становится заниматель-ным занятием и может привлечь в математиче-ские лабиринты всё новых любознательных. По-моему, это является основой любой науки.

Продолжая изучать метод математической индукции, я постараюсь научиться применять его не только в математике, но и в решении проблем физики, химии и самой жизни.

МАТЕМАТИКА:

ЛЕКЦИИ, ЗАДАЧИ, РЕШЕНИЯ

Учебное пособие / В.Г.Болтянский, Ю.В.Сидоров, М.И.Шабунин. ООО “Попурри” 1996.

АЛГЕБРА И НАЧАЛА АНАЛИЗА

Учебное пособие / И.Т.Демидов,А.Н.Колмогоров, С.И.Шварцбург,О.С.Ивашев-Мусатов, Б.Е.Вейц. “Просвещение” 1975.

Библиографическое описание: Баданин А. С., Сизова М. Ю. Применение метода математической индукции к решению задач на делимость натуральных чисел // Юный ученый. — 2015. — №2. — С. 84-86..02.2019).



В математических олимпиадах часто встречаются достаточно трудные задачи на доказательство делимости натуральных чисел. Перед школьниками возникает проблема: как найти универсальный математический метод, позволяющий решать подобные задачи?

Оказывается, большинство задач на доказательство делимости можно решать методом математической индукции, но в школьных учебниках уделяется очень мало внимания этому методу, чаще всего приводится краткое теоретическое описание и разбирается несколько задач.

Метод математической индукции мы находим в теории чисел. На заре теории чисел математики открыли многие факты индуктивным путем: Л. Эйлер и К. Гаусс рассматривали подчас тысячи примеров, прежде чем подметить числовую закономерность и поверить в нее. Но одновременно они понимали, сколь обманчивыми могут быть гипотезы, прошедшие «конечную» проверку. Для индуктивного перехода от утверждения, проверенного для конечного подмножества, к аналогичному утверждению для всего бесконечного множества необходимо доказательство. Такой способ предложил Блез Паскаль, который нашел общий алгоритм для нахождения признаков делимости любого целого числа на любое другое целое число (трактат «О характере делимости чисел).

Метод математической индукции используется, чтобы доказать путем рассуждений истинность некоего утверждения для всех натуральных чисел или истинность утверждения начиная с некоторого числа n.

Решение задач на доказательство истинности некоторого утверждения методом математической индукции состоит из четырех этапов (рис. 1):

Рис. 1. Схема решения задачи

1. Базис индукции . Проверяют справедливость утверждения для наименьшего из натуральных чисел, при котором утверждение имеет смысл.

2. Индукционное предположение . Предполагаем, что утверждение верно для некоторого значения k.

3. Индукционный переход . Доказываем, что утверждение справедливо для k+1.

4. Вывод . Если такое доказательство удалось довести до конца, то, на основе принципа математической индукции можно утверждать, что утверждение верно для любого натурального числа n.

Рассмотрим применение метода математической индукции к решению задач на доказательство делимости натуральных чисел.

Пример 1 . Доказать, что число 5 кратно 19, где n - натуральное число.

Доказательство:

1) Проверим, что эта формула верна при n = 1: число =19 кратно 19.

2) Пусть эта формула верна для n = k, т. е. число кратно 19.

Кратно 19. Действительно, первое слагаемое делится на 19 в силу предположения (2); второе слагаемое тоже делится на 19, потому что содержит множитель 19.

Пример 2. Доказать, что сумма кубов трех последовательных натуральных чисел делится на 9.

Доказательство:

Докажем утверждение: «Для любого натурального числа n выражение n 3 +(n+1) 3 +(n+2) 3 кратно 9.

1) Проверим, что эта формула верна при n = 1: 1 3 +2 3 +3 3 =1+8+27=36 кратно 9.

2) Пусть эта формула верна для n = k, т. е. k 3 +(k+1) 3 +(k+2) 3 кратно 9.

3) Докажем, что формула верна и для n = k + 1, т. е. (k+1) 3 +(k+2) 3 +(k+3) 3 кратно 9. (k+1) 3 +(k+2) 3 +(k+3) 3 =(k+1) 3 +(k+2) 3 + k 3 + 9k 2 +27 k+ 27=(k 3 +(k+1) 3 +(k+2) 3)+9(k 2 +3k+ 3).

Полученное выражение содержит два слагаемых, каждое из которых делится на 9, таким образом, сумма делится на 9.

4) Оба условия принципа математической индукции выполнены, следовательно, предложение истинно при всех значениях n.

Пример 3. Доказать, что при любом натуральном n число 3 2n+1 +2 n+2 делится на 7.

Доказательство:

1) Проверим, что эта формула верна при n = 1: 3 2*1+1 +2 1+2 = 3 3 +2 3 =35, 35 кратно 7.

2) Пусть эта формула верна для n = k, т. е. 3 2 k +1 +2 k +2 делится на 7.

3) Докажем, что формула верна и для n = k + 1, т. е.

3 2(k +1)+1 +2 (k +1)+2 =3 2 k +1 ·3 2 +2 k +2 ·2 1 =3 2 k +1 ·9+2 k +2 ·2=3 2 k +1 ·9+2 k +2 ·(9–7)=(3 2 k +1 +2 k +2)·9–7·2 k +2 .Т. к. (3 2 k +1 +2 k +2)·9 делится на 7 и 7·2 k +2 делится на 7, то и их разность делится на 7.

4) Оба условия принципа математической индукции выполнены, следовательно, предложение истинно при всех значениях n.

Многие задачи на доказательство в теории делимости натуральных чисел удобно решать с применением метода математической индукции, можно даже сказать, что решение задач данным методом вполне алгоритмизировано, достаточно выполнить 4 основных действия. Но универсальным этот метод назвать нельзя, т. к. присутствуют и недостатки: во-первых, доказывать можно только на множестве натуральных чисел, а во-вторых, доказывать можно только для одной переменной.

Для развития логического мышления, математической культуры этот метод является необходимым инструментом, ведь ещё великий русский математик А. Н. Колмогоров говорил: «Понимание и умение правильно применять принцип математической индукции, является хорошим критерием логической зрелости, которая совершенно необходима математику».

Литература:

1. Виленкин Н. Я. Индукция. Комбинаторика. - М.: Просвещение, 1976. - 48 с.

2. Генкин Л. О математической индукции. - М., 1962. - 36 с.

3. Соломинский И. С. Метод математической индукции. - М.: Наука, 1974. - 63с.

4. Шарыгин И. Ф. Факультативный курс по математике: Решение задач: Учеб.пособие для 10 кл. сред.шк. - М.: Просвещение, 1989. - 252 с.

5. Шень А. Математическая индукция. - М.: МЦНМО,2007.- 32 с.

Если предложение А(n), зависящее от натурального числа n, истинно для n=1 и из того, что оно истинно для n=k (где k-любое натуральное число), следует, что оно истинно и для следующего числа n=k+1, то предположение А(n) истинно для любого натурального числа n.

В ряде случаев бывает нужно доказать справедливость некоторого утверждения не для всех натуральных чисел, а лишь для n>p, где p-фиксированное натуральное число. В этом случае принцип математической индукции формулируется следующим образом.

Если предложение А(n) истинно при n=p и если А(k) Ю А(k+1) для любого k>p, то предложение А(n) истинно для любого n>p.

Доказательство по методу математической индукции проводиться следующим образом. Сначала доказываемое утверждение проверяется для n=1, т.е. устанавливается истинность высказывания А(1). Эту часть доказательства называют базисом индукции. Затем следует часть доказательства, называемая индукционным шагом. В этой части доказывают справедливость утверждения для n=k+1 в предположении справедливости утверждения для n=k (предположение индукции), т.е. доказывают, что А(k) Ю A(k+1)

Доказать, что 1+3+5+…+(2n-1)=n 2 .

  • 1) Имеем n=1=1 2 . Следовательно, утверждение верно при n=1, т.е. А(1) истинно
  • 2) Докажем, что А(k) Ю A(k+1)

Пусть k-любое натуральное число и пусть утверждение справедливо для n=k, т.е

1+3+5+…+(2k-1)=k 2

Докажем, что тогда утверждение справедливо и для следующего натурального числа n=k+1, т.е. что

  • 1+3+5+…+(2k+1)=(k+1) 2 В самом деле,
  • 1+3+5+…+(2k-1)+(2k+1)=k 2 +2k+1=(k+1) 2

Итак, А(k) Ю А(k+1). На основании принципа математической индукции заключаем, что предположение А(n) истинно для любого n О N

Доказать, что

1+х+х 2 +х 3 +…+х n =(х n+1 -1)/(х-1), где х № 1

  • 1) При n=1 получаем
  • 1+х=(х 2 -1)/(х-1)=(х-1)(х+1)/(х-1)=х+1

следовательно, при n=1 формула верна; А(1) истинно

  • 2) Пусть k-любое натуральное число и пусть формула верна при n=k,
  • 1+х+х 2 +х 3 +…+х k =(х k+1 -1)/(х-1)

Докажем, что тогда выполняется равенство

  • 1+х+х 2 +х 3 +…+х k +x k+1 =(x k+2 -1)/(х-1) В самом деле
  • 1+х+х 2 +x 3 +…+х k +x k+1 =(1+x+x 2 +x 3 +…+x k)+x k+1 =

=(x k+1 -1)/(x-1)+x k+1 =(x k+2 -1)/(x-1)

Итак, А(k) Ю A(k+1). На основании принципа математической индукции заключаем, что формула верна для любого натурального числа n

Доказать, что число диагоналей выпуклого n-угольника равно n(n-3)/2

Решение: 1) При n=3 утверждение справедливо, ибо в треугольнике

А 3 =3(3-3)/2=0 диагоналей; А 2 А(3) истинно

2) Предположим, что во всяком выпуклом k-угольнике имеет А 1 ся А k =k(k-3)/2 диагоналей. А k Докажем, что тогда в выпуклом А k+1 (k+1)-угольнике число диагоналей А k+1 =(k+1)(k-2)/2.

Пусть А 1 А 2 А 3 …A k A k+1 -выпуклый (k+1)-угольник. Проведём в нём диагональ A 1 A k . Чтобы подсчитать общее число диагоналей этого (k+1)-угольника нужно подсчитать число диагоналей в k-угольнике A 1 A 2 …A k , прибавить к полученному числу k-2, т.е. число диагоналей (k+1)-угольника, исходящих из вершины А k+1 , и, кроме того, следует учесть диагональ А 1 А k

Таким образом,

G k+1 =G k +(k-2)+1=k(k-3)/2+k-1=(k+1)(k-2)/2

Итак, А(k) Ю A(k+1). Вследствие принципа математической индукции утверждение верно для любого выпуклого n-угольника.

Доказать, что при любом n справедливо утверждение:

1 2 +2 2 +3 2 +…+n 2 =n(n+1)(2n+1)/6

Решение: 1) Пусть n=1, тогда

Х 1 =1 2 =1(1+1)(2+1)/6=1

2) Предположим, что n=k

Х k =k 2 =k(k+1)(2k+1)/6

3) Рассмотрим данное утвержде-ние при n=k+1

X k+1 =(k+1)(k+2)(2k+3)/6

X k+1 =1 2 +2 2 +3 2 +…+k 2 +(k+1) 2 =k(k+1)(2k+1)/6+ +(k+1) 2

=(k(k+1)(2k+1)+6(k+1) 2)/6=(k+1)(k(2k+1)+

6(k+1))/6=(k+1)(2k 2 +7k+6)/6=(k+1)(2(k+3/2)(k+

2))/6=(k+1)(k+2)(2k+3)/6

Мы доказали справедливость равенства и при n=k+1, следовательно, в силу метода математической индукции, утверждение верно для любого натурального n

Доказать, что для любого натурального n справедливо равенство:

1 3 +2 3 +3 3 +…+n 3 =n 2 (n+1) 2 /4

Решение: 1) Пусть n=1

Тогда Х 1 =1 3 =1 2 (1+1) 2 /4=1. Мы видим, что при n=1 утверждение верно.

2) Предположим, что равенство верно при n=k

X k =k 2 (k+1) 2 /4

3) Докажем истинность этого утверждения для n=k+1, т.е

Х k+1 =(k+1) 2 (k+2) 2 /4. X k+1 =1 3 +2 3 +…+k 3 +(k+1) 3 =k 2 (k+1) 2 /4+(k+1) 3 =(k 2 (k++1) 2 +4(k+1) 3)/4=(k+1) 2 (k 2 +4k+4)/4=(k+1) 2 (k+2) 2 /4

Из приведённого доказательства видно, что утверждение верно при n=k+1, следовательно, равенство верно при любом натуральном n

Доказать, что

((2 3 +1)/(2 3 -1)) ґ ((3 3 +1)/(3 3 -1)) ґ … ґ ((n 3 +1)/(n 3 -1))=3n(n+1)/2(n 2 +n+1), где n>2

Решение: 1) При n=2 тождество выглядит:

  • (2 3 +1)/(2 3 -1)=(3 ґ 2 ґ 3)/2(2 2 +2+1), т.е. оно верно
  • 2) Предположим, что выражение верно при n=k
  • (2 3 +1)/(2 3 -1) ґ … ґ (k 3 +1)/(k 3 -1)=3k(k+1)/2(k 2 +k+1)
  • 3) Докажем верность выражения при n=k+1
  • (((2 3 +1)/(2 3 -1)) ґ … ґ ((k 3 +1)/(k 3 -1))) ґ (((k+1) 3 +

1)/((k+1) 3 -1))=(3k(k+1)/2(k 2 +k+1)) ґ ((k+2)((k+

1) 2 -(k+1)+1)/k((k+1) 2 +(k+1)+1))=3(k+1)(k+2)/2 ґ

ґ ((k+1) 2 +(k+1)+1)

Мы доказали справедливость равенства и при n=k+1, следовательно, в силу метода математической индукции, утверждение верно для любого n>2

Доказать, что

1 3 -2 3 +3 3 -4 3 +…+(2n-1) 3 -(2n) 3 =-n 2 (4n+3) для любого натурального n

Решение: 1) Пусть n=1, тогда

  • 1 3 -2 3 =-1 3 (4+3); -7=-7
  • 2) Предположим, что n=k, тогда
  • 1 3 -2 3 +3 3 -4 3 +…+(2k-1) 3 -(2k) 3 =-k 2 (4k+3)
  • 3) Докажем истинность этого утверждения при n=k+1
  • (1 3 -2 3 +…+(2k-1) 3 -(2k) 3)+(2k+1) 3 -(2k+2) 3 =-k 2 (4k+3)+

+(2k+1) 3 -(2k+2) 3 =-(k+1) 3 (4(k+1)+3)

Доказана и справедливость равенства при n=k+1, следовательно утверждение верно для любого натурального n.

Доказать верность тождества

(1 2 /1 ґ 3)+(2 2 /3 ґ 5)+…+(n 2 /(2n-1) ґ (2n+1))=n(n+1)/2(2n+1) для любого натурального n

  • 1) При n=1 тождество верно 1 2 /1 ґ 3=1(1+1)/2(2+1)
  • 2) Предположим, что при n=k
  • (1 2 /1 ґ 3)+…+(k 2 /(2k-1) ґ (2k+1))=k(k+1)/2(2k+1)
  • 3) Докажем, что тождество верно при n=k+1
  • (1 2 /1 ґ 3)+…+(k 2 /(2k-1)(2k+1))+(k+1) 2 /(2k+1)(2k+3)=(k(k+1)/2(2k+1))+((k+1) 2 /(2k+1)(2k+3))=((k+1)/(2k+1)) ґ ((k/2)+((k+1)/(2k+3)))=(k+1)(k+2) ґ (2k+1)/2(2k+1)(2k+3)=(k+1)(k+2)/2(2(k+1)+1)

Из приведённого доказательства видно, что утверждение верно при любом натуральном n.

Доказать, что (11 n+2 +12 2n+1) делится на 133 без остатка

Решение: 1) Пусть n=1, тогда

11 3 +12 3 =(11+12)(11 2 -132+12 2)=23 ґ 133

Но (23 ґ 133) делится на 133 без остатка, значит при n=1 утверждение верно; А(1) истинно.

  • 2) Предположим, что (11 k+2 +12 2k+1) делится на 133 без остатка
  • 3) Докажем, что в таком случае (11 k+3 +12 2k+3) делится на 133 без остатка. В самом деле
  • 11 k+3 +12 2л+3 =11 ґ 11 k+2 +12 2 ґ 12 2k+1 =11 ґ 11 k+2 +

+(11+133) ґ 12 2k+1 =11(11 k+2 +12 2k+1)+133 ґ 12 2k+1

Полученная сумма делится на 133 без остатка, так как первое её слагаемое делится на 133 без остатка по предположению, а во втором одним из множителей выступает 133. Итак, А(k) Ю А(k+1). В силу метода математической индукции утверждение доказано

Доказать, что при любом n 7 n -1 делится на 6 без остатка

  • 1) Пусть n=1, тогда Х 1 =7 1 -1=6 де-лится на 6 без остатка. Значит при n=1 утвержде-ние верно
  • 2) Предположим, что при n=k 7 k -1 делится на 6 без остатка
  • 3) Докажем, что утверждение справедливо для n=k+1

X k+1 =7 k+1 -1=7 ґ 7 k -7+6=7(7 k -1)+6

Первое слагаемое делится на 6, поскольку 7 k -1 делится на 6 по предположению, а вторым слагаемым является 6. Значит 7 n -1 кратно 6 при любом натуральном n. В силу метода математической индукции утверждение доказано.

Доказать, что 3 3n-1 +2 4n-3 при произвольном натуральном n делится на 11.

1) Пусть n=1, тогда

Х 1 =3 3-1 +2 4-3 =3 2 +2 1 =11 делится на 11 без остатка.

Значит, при n=1 утверждение верно

  • 2) Предположим, что при n=k X k =3 3k-1 +2 4k-3 делится на 11 без остатка
  • 3) Докажем, что утверждение верно для n=k+1

X k+1 =3 3(k+1)-1 +2 4(k+1)-3 =3 3k+2 +2 4k+1 =3 3 ґ 3 3k-1 +2 4 ґ 2 4k-3 =

27 ґ 3 3k-1 +16 ґ 2 4k-3 =(16+11) ґ 3 3k-1 +16 ґ 2 4k-3 =16 ґ 3 3k-1 +

11 ґ 3 3k-1 +16 ґ 2 4k-3 =16(3 3k-1 +2 4k-3)+11 ґ 3 3k-1

Первое слагаемое делится на 11 без остатка, поскольку 3 3k-1 +2 4k-3 делится на 11 по предположению, второе делится на 11, потому что одним из его множителей есть число 11. Значит и сумма делится на 11 без остатка при любом натуральном n. В силу метода математической индукции утверждение доказано.

Доказать, что 11 2n -1 при произвольном натуральном n делится на 6 без остатка

  • 1) Пусть n=1, тогда 11 2 -1=120 делится на 6 без остатка. Значит при n=1 утверждение верно
  • 2) Предположим, что при n=k 1 2k -1 делится на 6 без остатка
  • 11 2(k+1) -1=121 ґ 11 2k -1=120 ґ 11 2k +(11 2k -1)

Оба слагаемых делятся на 6 без остатка: первое содержит кратное 6-ти число 120, а второе делится на 6 без остатка по предположению. Значит и сумма делится на 6 без остатка. В силу метода математической индукции утверждение доказано.

Доказать, что 3 3n+3 -26n-27 при произвольном натуральном n делится на 26 2 (676) без остатка

Предварительно докажем, что 3 3n+3 -1 делится на 26 без остатка

  • 1. При n=0
  • 3 3 -1=26 делится на 26
  • 2. Предположим, что при n=k
  • 3 3k+3 -1 делится на 26
  • 3. Докажем, что утверждение верно при n=k+1
  • 3 3k+6 -1=27 ґ 3 3k+3 -1=26 ґ 3 3л+3 +(3 3k+3 -1) -делится на 26

Теперь проведём доказательство утверждения, сформулированного в условии задачи

  • 1) Очевидно, что при n=1 утверждение верно
  • 3 3+3 -26-27=676
  • 2) Предположим, что при n=k выражение 3 3k+3 -26k-27 делится на 26 2 без остатка
  • 3) Докажем, что утверждение верно при n=k+1
  • 3 3k+6 -26(k+1)-27=26(3 3k+3 -1)+(3 3k+3 -26k-27)

Оба слагаемых делятся на 26 2 ; первое делится на 26 2 , потому что мы доказали делимость на 26 выражения, стоящего в скобках, а второе делится по предположению индукции. В силу метода математической индукции утверждение доказано

Доказать, что если n>2 и х>0, то справедливо неравенство (1+х) n >1+n ґ х

  • 1) При n=2 неравенство справед-ливо, так как
  • (1+х) 2 =1+2х+х 2 >1+2х

Значит, А(2) истинно

  • 2) Докажем, что А(k) Ю A(k+1), если k> 2. Предположим, что А(k) истинно, т.е., что справедливо неравенство
  • (1+х) k >1+k ґ x. (3)

Докажем, что тогда и А(k+1) истинно, т.е., что справедливо неравенство

(1+x) k+1 >1+(k+1) ґ x

В самом деле, умножив обе части неравенства (3) на положительное число 1+х, получим

(1+x) k+1 >(1+k ґ x)(1+x)

Рассмотрим правую часть последнего неравенства; имеем

(1+k ґ x)(1+x)=1+(k+1) ґ x+k ґ x 2 >1+(k+1) ґ x

В итоге получаем, что (1+х) k+1 >1+(k+1) ґ x

Итак, А(k) Ю A(k+1). На основании принципа математической индукции можно утверждать, что неравенство Бернулли справедливо для любого n> 2

Доказать, что справедливо неравенство (1+a+a 2) m > 1+m ґ a+(m(m+1)/2) ґ a 2 при а> 0

Решение: 1) При m=1

  • (1+а+а 2) 1 > 1+а+(2/2) ґ а 2 обе части равны
  • 2) Предположим, что при m=k
  • (1+a+a 2) k >1+k ґ a+(k(k+1)/2) ґ a 2
  • 3) Докажем, что при m=k+1 не-равенство верно
  • (1+a+a 2) k+1 =(1+a+a 2)(1+a+a 2) k >(1+a+a 2)(1+k ґ a+

+(k(k+1)/2) ґ a 2)=1+(k+1) ґ a+((k(k+1)/2)+k+1) ґ a 2 +

+((k(k+1)/2)+k) ґ a 3 +(k(k+1)/2) ґ a 4 > 1+(k+1) ґ a+

+((k+1)(k+2)/2) ґ a 2

Мы доказали справедливость неравенства при m=k+1, следовательно, в силу метода математической индукции, неравенство справедливо для любого натурального m

Доказать, что при n>6 справедливо неравенство 3 n >n ґ 2 n+1

Перепишем неравенство в виде (3/2) n >2n

  • 1. При n=7 имеем 3 7 /2 7 =2187/128>14=2 ґ 7 неравенство верно
  • 2. Предположим, что при n=k (3/2) k >2k
  • 3) Докажем верность неравенства при n=k+1
  • 3 k+1 /2 k+1 =(3 k /2 k) ґ (3/2)>2k ґ (3/2)=3k>2(k+1)

Так как k>7, последнее неравенство очевидно.

В силу метода математической индукции неравенство справедливо для любого натурального n

Доказать, что при n>2 справедливо неравенство

1+(1/2 2)+(1/3 2)+…+(1/n 2)<1,7-(1/n)

  • 1) При n=3 неравенство верно
  • 1+(1/2 2)+(1/3 2)=245/180
  • 2. Предположим, что при n=k
  • 1+(1/2 2)+(1/3 2)+…+(1/k 2)=1,7-(1/k)
  • 3) Докажем справедливость неравенства при n=k+1
  • (1+(1/2 2)+…+(1/k 2))+(1/(k+1) 2)

Докажем, что 1,7-(1/k)+(1/(k+1) 2)<1,7-(1/k+1) Ы

Ы (1/(k+1) 2)+(1/k+1)<1/k Ы (k+2)/(k+1) 2 <1/k Ы

Ы k(k+2)<(k+1) 2 Ы k 2 +2k

Последнее очевидно, а поэтому

1+(1/2 2)+(1/3 2)+…+(1/(k+1) 2)<1,7-(1/k+1)

В силу метода математической индукции неравенство доказано.

Математическая индукция лежит в основе одного из самых распространенных методов математических доказательств. С его помощью можно доказать большую часть формул с натуральными числами n , например, формулу нахождения суммы первых членов прогрессии S n = 2 a 1 + n - 1 d 2 · n , формулу бинома Ньютона a + b n = C n 0 · a n · C n 1 · a n - 1 · b + . . . + C n n - 1 · a · b n - 1 + C n n · b n .

В первом пункте мы разберем основные понятия, потом рассмотрим основы самого метода, а затем расскажем, как с его помощью доказывать равенства и неравенства.

Yandex.RTB R-A-339285-1

Понятия индукции и дедукции

Для начала рассмотрим, что такое вообще индукция и дедукция.

Определение 1

Индукция – это переход от частного к общему, а дедукция наоборот – от общего к частному.

Например, у нас есть утверждение: 254 можно разделить на два нацело. Из него мы можем сделать множество выводов, среди которых будут как истинные, так и ложные. Например, утверждение, что все целые числа, которые имеют в конце цифру 4 , могут делиться на два без остатка – истинное, а то, что любое число из трех знаков делится на 2 – ложное.

В целом можно сказать, что с помощью индуктивных рассуждений можно получить множество выводов из одного известного или очевидного рассуждения. Математическая индукция позволяет нам определить, насколько справедливы эти выводы.

Допустим, у нас есть последовательность чисел вида 1 1 · 2 , 1 2 · 3 , 1 3 · 4 , 1 4 · 5 , . . . , 1 n (n + 1) , где n обозначает некоторое натуральное число. В таком случае при сложении первых элементов последовательности мы получим следующее:

S 1 = 1 1 · 2 = 1 2 , S 2 = 1 1 · 2 + 1 2 · 3 = 2 3 , S 3 = 1 1 · 2 + 1 2 · 3 + 1 3 · 4 = 3 4 , S 4 = 1 1 · 2 + 1 2 · 3 + 1 3 · 4 + 1 4 · 5 = 4 5 , . . .

Используя индукцию, можно сделать вывод, что S n = n n + 1 . В третьей части мы докажем эту формулу.

В чем заключается метод математической индукции

В основе этого метода лежит одноименный принцип. Он формулируется так:

Определение 2

Некое утверждение будет справедливым для натурального значения n тогда, когда 1) оно будет верно при n = 1 и 2) из того, что это выражение справедливо для произвольного натурального n = k , следует, что оно будет верно и при n = k + 1 .

Применение метода математической индукции осуществляется в 3 этапа:

  1. Для начала мы проверяем верность исходного утверждения в случае произвольного натурального значения n (обычно проверка делается для единицы).
  2. После этого мы проверяем верность при n = k .
  3. И далее доказываем справедливость утверждения в случае, если n = k + 1 .

Как применять метод математической индукции при решении неравенств и уравнений

Возьмем пример, о котором мы говорили ранее.

Пример 1

Докажите формулу S n = 1 1 · 2 + 1 2 · 3 + . . . + 1 n (n + 1) = n n + 1 .

Решение

Как мы уже знаем, для применения метода математической индукции надо выполнить три последовательных действия.

  1. Для начала проверяем, будет ли данное равенство справедливым при n , равном единице. Получаем S 1 = 1 1 · 2 = 1 1 + 1 = 1 2 . Здесь все верно.
  2. Далее делаем предположение, что формула S k = k k + 1 верна.
  3. В третьем шаге нам надо доказать, что S k + 1 = k + 1 k + 1 + 1 = k + 1 k + 2 , основываясь на справедливости предыдущего равенства.

Мы можем представить k + 1 в качестве суммы первых членов исходной последовательности и k + 1:

S k + 1 = S k + 1 k + 1 (k + 2)

Поскольку во втором действии мы получили, что S k = k k + 1 , то можно записать следующее:

S k + 1 = S k + 1 k + 1 (k + 2) .

Теперь выполняем нужные преобразования. Нам потребуется выполнить приведение дроби к общему знаменателю, приведение подобных слагаемых, применить формулу сокращенного умножения и сократить то, что получилось:

S k + 1 = S k + 1 k + 1 (k + 2) = k k + 1 + 1 k + 1 (k + 2) = = k (k + 2) + 1 k + 1 (k + 2) = k 2 + 2 k + 1 k + 1 (k + 2) = (k + 1) 2 k + 1 (k + 2) = k + 1 k + 2

Таким образом, мы доказали равенство в третьем пункте, выполнив все три шага метода математической индукции.

Ответ: предположение о формуле S n = n n + 1 является верным.

Возьмем более сложную задачу с тригонометрическими функциями.

Пример 2

Приведите доказательство тождества cos 2 α · cos 4 α · . . . · cos 2 n α = sin 2 n + 1 α 2 n sin 2 α .

Решение

Как мы помним, первым шагом должна быть проверка верности равенства при n , равном единице. Чтобы это выяснить, нам надо вспомнить основные тригонометрические формулы.

cos 2 1 = cos 2 α sin 2 1 + 1 α 2 1 sin 2 α = sin 4 α 2 sin 2 α = 2 sin 2 α · cos 2 α 2 sin 2 α = cos 2 α

Следовательно, при n , равном единице, тождество будет верным.

Теперь предположим, что его справедливость сохранится при n = k , т.е. будет верно, что cos 2 α · cos 4 α · . . . · cos 2 k α = sin 2 k + 1 α 2 k sin 2 α .

Доказываем равенство cos 2 α · cos 4 α · . . . · cos 2 k + 1 α = sin 2 k + 2 α 2 k + 1 sin 2 α для случая, когда n = k + 1 , взяв за основу предыдущее предположение.

Согласно тригонометрической формуле,

sin 2 k + 1 α · cos 2 k + 1 α = = 1 2 (sin (2 k + 1 α + 2 k + 1 α) + sin (2 k + 1 α - 2 k + 1 α)) = = 1 2 sin (2 · 2 k + 1 α) + sin 0 = 1 2 sin 2 k + 2 α

Следовательно,

cos 2 α · cos 4 α · . . . · cos 2 k + 1 α = = cos 2 α · cos 4 α · . . . · cos 2 k α · cos 2 k + 1 α = = sin 2 k + 1 α 2 k sin 2 α · cos 2 k + 1 α = 1 2 · sin 2 k + 1 α 2 k sin 2 α = sin 2 k + 2 α 2 k + 1 sin 2 α

Пример решения задачи на доказательство неравенства с применением этого метода мы привели в статье о методе наименьших квадратов. Прочтите тот пункт, в котором выводятся формулы для нахождения коэффициентов аппроксимации.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

МБОУ лицей «Технико-экономический»

МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ

МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Методическая разработка «Метод математической индукции» составлена для обучающихся 10 класса математического профиля.

Первоочередные цели: познакомить обучающихся с методом математической индукции и научить применять его при решении различных задач.

В методической разработке рассматриваются вопросы элементарной математики: задачи на делимость, доказательство тождеств, доказательство неравенств, предлагаются задачи различной степени сложности, в том числе и задачи, предлагаемые на олимпиадах.

Роль индуктивных выводов в экспериментальных науках очень велика. Они дают те положения, из которых потом путем дедукции делаются дальнейшие умозаключения. Название метод математической индукции обманчиво – на самом деле этот метод является дедуктивным и дает строгое доказательство утверждениям, угаданным с помощью индукции. Метод математической индукции содействует выявлению связей между различными разделами математики, помогает развитию математической культуры обучающегося.

Определение метода математической индукции. Полная и неполная индукции. Доказательство неравенств. Доказательство тождеств. Решение задач на делимость. Решение различных задач по теме «Метод математической индукции».

ЛИТЕРАТУРА ДЛЯ УЧИТЕЛЯ

1. М.Л.Галицкий. Углубленное изучение курса алгебры и математического анализа. – М.Просвещение.1986.

2. Л.И.Звавич. Алгебра и начала анализа. Дидактические материалы. М.Дрофа.2001.

3. Н.Я.Виленкин. Алгебра и математический анализ. М Просвещение.1995.

4. Ю.В.Михеев. Метод математической индукции. НГУ.1995.

ЛИТЕРАТУРА ДЛЯ ОБУЧАЮЩИХСЯ

1. Н.Я.Виленкин. Алгебра и математический анализ. М Просвещение.1995.

2. Ю.В.Михеев. Метод математической индукции. НГУ.1995.

КЛЮЧЕВЫЕ СЛОВА

Индукция, аксиома, принцип математической индукции, полная индукция, неполная индукция, утверждение, тождество, неравенство, делимость.

ДИДАКТИЧЕСКОЕ ПРИЛОЖЕНИЕ К ТЕМЕ

«МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ».

Урок № 1.

Определение метода математической индукции.

Метод математической индукции является одним из высокоэффективных методом поиска новых результатов и доказательства истинности выдвинутых предположений. Хотя этот метод в математике и не нов, но интерес к нему не ослабевает. Впервые в четком изложении метод математической индукции был применен в 17 веке выдающимся французским ученым Блезом Паскалем при доказательстве свойств числового треугольника, носящего с того времени его имя. Однако идея математической индукции была известна еще древним грекам. В основе метода математической индукции лежит принцип математической индукции, который принимается как аксиома. Идею математической индукции рассмотрим на примерах.

Пример № 1.

Квадрат делится отрезком на две части, затем одна из полученных частей делится на две части и так далее. Определить, на какое число частей разделится квадрат через п шагов?

Решение.

После первого шага мы, по условию, получим 2 части. На втором шаге мы одну часть оставляем без изменений, а вторую – делим на 2 части и получаем 3 части. На третьем шаге мы 2 части оставляем без изменений, а третью делим на две части и получаем 4 части. На четвертом шаге мы 3 части оставляем без изменений, а последнюю часть делим на две части и получаем 5 частей. На пятом шаге мы получим 6 частей. Напрашивается предложение, что через п шагов мы получим (п+1) часть. Но это предложение нужно доказать. Предположим, что через к шагов квадрат разобьется на (к+1) часть. Тогда на (к+1) шаге мы к частей оставим без изменения, а (к+1) часть делим на две части и получим (к+2) части. Замечаете, что так можно рассуждать как угодно долго, до бесконечности. То есть, наше предположение, что через п шагов квадрат будет разбит на (п+1) часть, становится доказанным.

Пример № 2.

У бабушки был внучек, который очень любил варенье, и особенно то, что в литровой банке. Но бабушка не разрешала его трогать. И задумал внучек обмануть бабушку. Он решил съедать каждый день по 1/10 л из этой банки и доливать её водой, тщательно перемешав. Через сколько дней бабушка обнаружит обман, если варенье остается прежним на вид при разбавлении его водой на половину?

Решение.

Найдем, сколько чистого варенья останется в банке через п дней. После первого дня в банке останется смесь, состоящая на 9/10 из варенья и на 1/10 из воды. Через два дня из банки исчезнет 1/10 смеси воды и варенья и останется (в 1л смеси находится 9/10л варенья, в 1/10л смеси находится 9/100лваренья)

9/10 – 9/100=81/100=(9/10) 2 л варенья. На третий день из банки исчезнет 1/10л смеси, состоящей на 81/100 из варенья и на19/100 из воды. В 1л смеси находится 81/100л варенья, в 1/10л смеси 81/1000л варенья. 81/100 – 81/1000=

729/1000=(9/10) 3 л варенья останется через 3 дня, а остальное будет занимать вода. Выявляется закономерность. Через п дней в банке останется (9/10) п л варенья. Но это, опять, только наше предположение.

Пусть к – произвольное натуральное число. Предположим, что через к дней в банке останется (9/10) к л варенья. Посмотрим, что же тогда будет в банке еще через день, то есть, через (к+1) день. Из банки исчезнет 1/10л смеси, состоящей из (9/10) к л варенья и воды. В смеси находится (9/10) к л варенья, в 1/10л смеси (9/10) к+1 л варенья. Теперь мы смело можем заявлять, что через п дней в банке останется (9/10) п л варенья. Через 6 дней в банке будет 531444/1000000л варенья, через 7 дней – 4782969/10000000л варенья, то есть меньше половины.

Ответ: через 7 дней бабушка обнаружит обман.

Попытаемся выделить самое основное в решениях рассмотренных задач. Каждую из них мы начинали решать с рассмотрения отдельных или, как говорят, частных случаев. Затем на основе наших наблюдений, мы высказывали некоторое предположение Р(п) , зависящее от натурального п.

    утверждение проверили, то есть доказали Р(1), Р(2), Р(3);

    предположили, что Р(п) справедливо при п=к и вывели, что тогда оно будет справедливо и при следующем п, п=к+1.

А затем рассуждали примерно так: Р(1) верно, Р(2) верно, Р(3) верно, Р(4) верно,…, значит верно Р(п).

Принцип математической индукции.

Утверждение Р(п) , зависящее от натурального п , справедливо при всех натуральных п , если

1) доказана справедливость утверждения при п=1;

2) из предположения справедливости утверждения Р(п) при п=к следует

справедливость Р(п) при п=к+1.

В математике принцип математической индукции выбирается, как правило, в качестве одной из аксиом, определяющих натуральный ряд чисел, и, следовательно, принимается без доказательства. Метод доказательства по принципу математической индукции обычно называется методом математической индукции. Заметим, что этот метод широко применяется при доказательстве теорем, тождеств, неравенств при решении задач на делимость и многих других задач.

Урок № 2

Полная и неполная индукция.

В случае, когда математическое утверждение касается конечного числа объектов, его можно доказать, проверяя для каждого объекта, например, утверждение «Каждое двузначное четное число является суммой двух простых чисел». Метод доказательства, при котором мы проверяем утверждение для конечного числа случаев, называется полной математической индукцией. Этот метод применим сравнительно редко, так как утверждения чаще всего рассматриваются на бесконечных множествах. Например, теорема «Любое четное число равно сумме двух простых чисел» до сих пор ни доказана, ни опровергнута. Если бы мы даже проверили эту теорему для первого миллиарда, это бы ни на шаг не приблизило бы нас к её доказательству.

В естественных науках применяют неполную индукцию, проверяя эксперимент несколько раз, переносят результат на все случаи.

Пример № 3.

Угадаем с помощью неполной индукции формулу для суммы кубов натуральных чисел.

Решение.

1 3 =1; 1 3 +2 3 =(1+2) 2 ; 1 3 +2 3 +3 3 =(1+2+3) 2 ; 1 3 +2 3 +3 3 +4 3 =(1+2+3+4) 2 ;

1 3 +2 3 +3 3 +4 3 +5 3 =(1+2+3+4+5) 2 ; …; 1 3 +2 3 +…+n 3 =(1+2+…+n) 2 .

Доказательство.

Пусть верно для п=к.

Докажем, что верно для п=к+1.

Вывод: формула для суммы кубов натуральных чисел верна для любого натурального п.

Пример № 4.

Рассмотрите равенства и догадайтесь, к какому общему закону подводят эти примеры.

Решение.

1=0+1

2+3+4=1+8

5+6+7+8+9=8+27

10+11+12+13+14+15+16=27+64

17+18+19+20+21+22+23+24+25=64+125

……………………………………………………………..

Пример № 5.

Запишите в виде суммы следующие выражения:

1)
2)
3)
; 4)
.

греческая буква «сигма».

Пример № 6.

Запишите следующие суммы с помощью знака
:

2)

Пример № 7.

Запишите следующие выражения в виде произведений:

1)

3)
4)

Пример № 8.

Запишите следующие произведения с помощью знака

(прописная греческая буква «пи»)

1)
2)

Пример № 9.

Вычисляя значение многочлена f ( n )= n 2 + n +11 , при п=1,2,3,4.5,6,7 можно сделать предположение, что при любом натуральном п число f ( n ) простое.

Верно ли это предположение?

Решение.

Если каждое слагаемое суммы делится на число, то сумма делится на это число,
не является простым числом при любом натуральном п.

Разбор конечного числа случаев играет важную роль в математике: не давая доказательства того или иного утверждения, он помогает угадать правильную формулировку этого утверждения, если она ещё неизвестна. Именно так член Петербургской академии наук Гольдбах пришел к гипотезе, что любое натуральное число, начиная с двух, является суммой не более чем трёх простых чисел.

Урок № 3.

Метод математической индукции позволяет доказывать различные тождества.

Пример № 10. Докажем, что для всех п выполняется тождество

Решение.

Положим


Нам надо доказать, что



Докажем, что Тогда из истинности тождества

следует истинность тождества

По принципу математической индукции доказана истинность тождества при всех п .

Пример № 11.

Докажем тождество

Доказательство.


почленно получившиеся равенства.

;
. Значит, данное тождество истинно для всех
п .

Урок № 4.

Доказательство тождеств методом математической индукции.

Пример № 12. Докажем тождество

Доказательство.


Применяя принцип математической индукции, доказали, что равенство верно при всех п .

Пример № 13. Докажем тождество

Доказательство.


Применяя принцип математической индукции, доказали, что утверждение верно при любом натуральном п .

Пример № 14. Докажем тождество

Доказательство.


Пример № 15. Докажем тождество

1) п=1;

2) для п=к выполняется равенство

3) докажем, что равенство выполняется для п=к+1:

Вывод: тождество справедливо для любого натурального п.

Пример № 16. Докажем тождество

Доказательство.

Если п=1 , то

Пусть тождество выполняется при п=к.

Докажем, что тождество выполняется при п=к+1.



Тогда тождество справедливо для любого натурального п .

Урок № 5.

Доказательство тождеств методом математической индукции.

Пример № 17. Докажем тождество

Доказательство.

Если п=2 , то получаем верное равенство:

Пусть равенство верно при п=к:

Докажем справедливость утверждения при п=к+1.

Согласно принципу математической индукции, тождество доказано.

Пример № 18. Докажем тождество
при п≥2.

При п=2 это тождество перепишется в очень простом виде

и, очевидно, верно.

Пусть при п=к действительно

.

Докажем справедливость утверждения при п=к+1, то есть выполняется равенство: .

Итак, мы доказали, что тождество верно при любом натуральном п≥2.

Пример № 19. Докажем тождество

При п=1 получим верное равенство:

Предположим, что при п=к получаем также верное равенство:

Докажем, что наблюдается справедливость равенства при п=к+1:

Тогда тождество справедливо при любом натуральном п .

Урок № 6.

Решение задач на делимость.

Пример № 20. Доказать методом математической индукции, что

делится на 6 без остатка.

Доказательство.

При п=1 наблюдается деление на 6 без остатка,
.

Пусть при п=к выражение
кратно
6.

Докажем, что при п=к+1 выражение
кратно
6 .

Каждое слагаемое кратно 6 , следовательно сумма кратна 6 .

Пример № 21.
на
5 без остатка.

Доказательство.

При п=1 выражение делится без остатка
.

Пусть при п=к выражение
также делится на
5 без остатка.

При п=к+1 делится на 5 .

Пример № 22. Доказать делимость выражения
на
16.

Доказательство.

При п=1 кратно 16 .

Пусть при п=к
кратно
16.

При п=к+1

Все слагаемые делятся на 16: первое – очевидно, второе по предположению, а в третьем – в скобках стоит четное число.

Пример № 23. Доказать делимость
на
676.

Доказательство.

Предварительно докажем, что
делится на
.

При п=0
.

Пусть при п=к
делится на
26 .

Тогда при п=к+1 делится на 26 .

Теперь проведем доказательство утверждения, сформулированного в условии задачи.

При п=1 делится на 676.

При п=к верно, что
делится на
26 2 .

При п=к+1 .

Оба слагаемых делятся на 676 ; первое – потому, что мы доказали делимость на 26 выражения, стоящего в скобках, а второе делится по предположению индукции.

Урок № 7.

Решение задач на делимость.

Пример № 24.

Доказать, что
делится на 5 без остатка.

Доказательство.

При п=1
делится на
5.

При п=к
делится на
5 без остатка.

При п=к+1 каждое слагаемое делится на 5 без остатка.

Пример № 25.

Доказать, что
делится на 6 без остатка.

Доказательство.

При п=1
делится на
6 без остатка.

Пусть при п=к
делится на
6 без остатка.

При п=к+1 делится на 6 без остатка, так как каждое слагаемое делится на 6 без остатка: первое слагаемое – по предположению индукции, второе – очевидно, третье – потому, что
четное число.

Пример № 26.

Доказать, что
при делении на 9 дает остаток 1 .

Доказательство.

Докажем, что
делится на 9 .

При п=1
делится на 9 . Пусть при п=к
делится на
9 .

При п=к+1 делится на 9 .

Пример № 27.

Доказать, что делится на 15 без остатка.

Доказательство.

При п=1 делится на 15 .

Пусть при п=к делится на 15 без остатка.

При п=к+1

Первое слагаемое кратно 15 по предположению индукции, второе слагаемое кратно 15 – очевидно, третье слагаемое кратно 15 , так как
кратно
5 (доказано в примере № 21), четвертое и пятое слагаемые также кратны 5 , что очевидно, тогда сумма кратна 15 .

Урок № 8-9.

Доказательство неравенств методом математической индукции

Пример № 28.
.

При п=1 имеем
- верно.

Пусть при п=к
- верное неравенство.

При п=к+1

Тогда неравенство справедливо для любого натурального п .

Пример № 29. Доказать, что справедливо неравенство
при любом п .

При п=1 получим верное неравенство 4 >1.

Пусть при п=к справедливо неравенство
.

Докажем, что при п=к+1 справедливо неравенство

Для любого натурального к наблюдается неравенство .

Если
при
то



Пример № 30.

при любом натуральном п и любом

Пусть п=1
, верно.

Предположим, что неравенство выполняется при п=к :
.

При п=к+1

Пример № 31. Доказать справедливость неравенства

при любом натуральном п .

Докажем сначала, что при любом натуральном т справедливо неравенство

Умножим обе части неравенства на
. Получим равносильное неравенство или
;
; - это неравенство выполняется при любом натуральном т .

При п=1 исходное неравенство верно
;
;
.

Пусть неравенство выполняется при п=к:
.

При п=к+1

Урок № 10.

Решение задач по теме

Метод математической индукции.

Пример № 32. Доказать неравенство Бернулли.

Если
, то для всех натуральных значений п выполняется неравенство

Доказательство.

При п=1 доказываемое неравенство принимает вид
и, очевидно, справедливо. Предположим, что оно верно при
п=к , то есть что
.

Так как по условию
, то
, и потому неравенство не изменит смысла при умножении обеих его частей на
:

Так как
, то получаем, что

.

Итак, неравенство верно при п=1 , а из его истинности при п=к следует, что оно истинно и при п=к+1. Значит, в силу математической индукции оно имеет место для всех натуральных п.

Например,

Пример № 33. Найти все натуральные значения п , для которых справедливо неравенство

Решение.

При п=1 неравенство справедливо. При п=2 неравенство также справедливо.

При п=3 неравенство уже не выполняется. Лишь при п=6 неравенство выполняется, так что за базис индукции можно взять п=6.

Предположим, что неравенство справедливо для некоторого натурального к:

Рассмотрим неравенство

Последнее неравенство выполняется, если
Контрольная работа по теме п=1 задана рекуррентно: п≥5 , где п - -натуральное число.




Рассказать друзьям