Оси инерции. Главные оси и главные моменты инерции Главные оси сопромат

💖 Нравится? Поделись с друзьями ссылкой

Из формул (6.22) – (6.25) следует, что при повороте осей моменты инерции изменяются, но сумма осевых моментов остается постоянной .

Следовательно, если относительно одной оси значение момента инерции будет наибольшим , то относительно другой – наименьшим . В этом случае центробежный момент относительно этих осей оказывается равным нулю .

Главными центральными осями называются оси, проходящие через центр тяжести и относительно которых центробежный момент равен нулю, а осевые моменты относительно них (осей) обладают свойствами экстремальности и называются главными центральными моментами инерции. Относительно одной главной оси момент инерции имеет наименьшее значение , относительно другой – наибольшее .

Будем обозначать эти оси буквами u и v . Докажем приведенное утверждение. Пусть оси x и y – центральные оси несимметричного сечения (рис. 6.12).

Определим положение главных осей путем поворота центральных осей на угол , при котором центробежный момент становится равным нулю.

.

Тогда из формулы (6.25)

. (6.26)

Формула (6.26) определяет положение главных осей, где – угол, на который нужно повернуть центральные оси, чтобы они стали главными. Отрицательные углы откладываются по ходу часовой стрелки от оси x .

Теперь покажем, что относительно главных осей осевые моменты инерции обладают свойством экстремальности. Вычислим производную от выражения (формула 6.22) и приравняем ее к нулю:

(6.27)

Сравнивая выражения (6.27) с (6.25) устанавливаем, что

.

Отсюда следует, что производная обращается в нуль, когда , а это значит, что экстремальные значения имеют моменты инерции относительно главных осей u и v . Тогда по формулам (6.22) и (6.23):

(6.28)

По формулам (6.28) определяются главные центральные моменты инерции.

Если сложить почленно формулы (6.28), то, очевидно, . Если исключить из формул (6.28) угол , то получим более удобную формулу для главных центральных моментов инерции:

Знак «+» перед вторым слагаемым в (6.29) относится к , знак «-» – к .

Полезно иметь в виду частные случаи:

Если фигура имеет две оси симметрии , то эти оси являются главными центральными осями.

2. Для правильных фигур – равносторонний треугольник, квадрат, круг и т.п., имеющих более двух осей симметрии, все центральные оси являются главными, а моменты инерции относительно них равны между собой.

Умение находить положение главных центральных осей и вычислять и необходимо для определения плоскости наибольшей жесткости сечения (след которой совпадает с осью ) при расчетах на изгиб (глава 7).



35. Общий порядок определения главных центральных

Моментов.

Пусть требуется найти положение главных центральных осей и вычислить относительно них моменты инерции для плоского сечения, состоящего из швеллера и полосы (рис. 6.13):

Проводят произвольную систему координат xOy .

Разбивают сечение на простые фигуры и по формулам (6.5) определяют положение центра тяжести С .

Находят моменты инерции простых фигур относительно собственных центральных осей, используя сортамент или по формулам.

Через точку С проводят центральные оси x c и y c параллельно осям простых фигур.

Определяют моменты инерции простых фигур относительно центральных осей сечения, используя формулы параллельного переноса (6.13).

Определяют центральные моменты инерции всего сечения как сумму соответствующих моментов простых фигур, найденных в пункте 5.

Вычисляют угол по формуле (6.26) и, поворачивая оси x c и y c на угол , изображают главные оси u и v .

По формулам (6.29) вычисляют и .

Делают проверку:

б) , если ;

36) Общий прядок определения главных центральных моментов инерции. Пример:

1. Если фигура имеет две оси симметрии, то эти оси и будут ГЦО.

2. Для правельных фигур (у которых больше 2- х оссей) все оси будут главными

3. Проводим вспомогательные оси(Х’ O’ Y’)

4. Разбиваем данное сечение на простые фигуры и показываем их собственные ЦО.

5. Находим положение ГЦО по формуле(21)

6. Вычисляем значения ГЦМ по формуле (23)

· Imax + Imin = Ix + Iy

· Imax >Ix>Iy>Iminесли Ix>Iy

· Iuv = Ix-Iy/2 sin2a + Ixycos2a +0

Формула 21:Tg2a = - 2Ixy/Ix - Iy

Формула23: Imax, Imin = *

37) Изгиб. Классификация видов изгиба. Прямой и чистый изгиб. Картина деформирования балки. Нейтральный слой и ось. Основные допущения .

Изгиб – деформирование при котором в поперечном сечении возникает изгибающий момент Мх. Брус, который работает на изгиб-балка



Виды изгиба:

Чистый изгиб имеет место, если в сечении возникает только изгибающий момент

Поперечный изгиб- если одновременно с моментом возникает поперечная сила

Плоский - все нагрузки лежат в одной плоскости

Пространственный - если все нагрузки лежат в разных продольных плоскостях

Прямой - если силовая плоскость совпадает с одной из главных осей инерции

Косой - если силовая плоскость не совпадает ни с одной из главных осей

В результате деформирования на участке чистого изгиба можно видеть:

Продольные волокна искривляются по дуге окружности: одни- укорачиваются, другие-удлиняются; между ними есть слой волокон, которые не меняют своей длины- нейтральный слой (н.с.), линию его пересечения с плоскостью поперечного сечения называют нейтральной осью (н.о.)

Расстояние между продольными волокнами не меняется

Поперечные сечения, оставаясь прямыми, поворачиваются на некоторый угол

Допущения:

1.Оненадавливании продольных волокон друг на друга, т.е. каждое волокно находиться в состоянии простого растяжения или сжатия, что сопровождается возникновением нормальных напряжений Ϭ

2.О справедливости гипотезы Бернули, т.е. сечения балки, плоские и нормальные к оси до деформации, остаются плоскими и нормальными к ее оси после деформации

Оси, относительно которых центробежный момент инерции равен нулю, называют главными осями (иногда их называют главными осями инерции). Через любую точку, взятую в плоскости сечения, можно провести в общем случае пару главных осей (в некоторых частных случаях их может быть бесчисленное множество). Для того чтобы убедиться в справедливости этого утверждения, рассмотрим, как изменяется центробежный момент инерции при повороте осей на 90" (рис. б.7). Для произвольной площадки dA, взятой в первом квадранте системы осей хОу, обе координаты, а следовательно, и их произведение положительны. В новой системе координат х,Оу„ повернутой относительно первоначальной на 90", произведение координат рассматриваемой площадки отрицательно. Абсолютное значение этого произведения не изменяется, т. е. ху= - х1у,. Очевидно, то же самое имеет место и для любой другой элементарной площадки. Значит, и знак суммы dAxy, представляющий собой центробежный момент инерции сечения, при повороте осей на 90" меняется на противоположный, т. е. J = = - J.

В процессе поворота осей центробежный момент инерции изменяется непрерывно, следовательно, при некотором положении осей он становится равным нулю. Эти оси и являются главными.

Хотя мы и установили, что главные оси можно провести через любую точку сечения, но практический интерес представляют только те из них, которые проходят через центр тяжести сечения - главные центральные оси. Вдальнейшем, как правило, для краткости будем называть их просто главными осями, опуская слово «центральные».

В общем случае сечения произвольной формы для определения положения главных осей необходимо провести специальное исследование. Здесь ограничимся рассмотрением частных случаев сечений, имеющих по меньшей мере одну ось симметрии (рис. 6.8).

П роведем через. центр тяжести сечения ось Ох, перпендикулярную оси симметрии Оу, и определим центробежный момент инерции J. Воспользуемся известным из курса математики свойством определенного интеграла (интеграл суммы равен сумме интегралов) и представим J s виде двух слагаемых:

так как, для любой элементарной площадки, расположенной справа от оси симметрии, есть соответствующая слева, для которой произведение координат отличается лишь знаком.

Таким образом, центробежный момент инерции относительно осей Ох и Оу оказался равным нулю, т. е. это главные оси. Итак, для нахождения главных осей симметричного сечения достаточно найти положение его центра тяжести. Одной из главных центральных осей является ось симметрии, вторая ось ей перпендикулярна. Конечно, приведенное доказательство остается в силе, если ось, перпендикулярная оси симметрии, проходит и не через центр тяжести сечения, т. е. ось симметрии и любая, ей перпендикулярная, образуют систему главных осей.

Нецентральные главные оси, как уже указывалось, интереса не представляют.

Осевые моменты инерции относительно главных центральных осей называют главными центральными (или сокращенно главными) моментами инерции. Относительно одной из главных осей момент инерции максимален, относительно другой - минимален. Например, для сечения, изображенного на рис. 6.8, максимальным является момент инерции J

(относительно оси Ox). Конечно, говоря об экстремальности главных моментов инерции, имеют в виду лишь их сравнение с другими моментами инерции, вычисленными относительно осей, проходящих через ту же точку сечения. Таким образом, то обстоятельство, что один из главных моментов инерции максимален, а другой - минимален, можно рассматривать как объяснение того, что они (н соответствующие оси) называются главными. Равенство же нулю центробежного момента инерции относительно главных осей - удобный признак для нх нахождения. Некоторые типы сечений, например круг, квадрат, правильный шестиугольник и др. (рис. 6.9), имеют бесчисленное множество главных центральных осей. Для этих сечений любая центральная ось является главной.

Не приводя доказательства, укажем, что, в случае если два главных центральных момента инерции сечения равны между собой, у этого сечения любая центральная ось главная и все главные центральные моменты инерции одинаковы.

Из формул (6.29) - (6.31) видно, что при повороте осей координат центробежный момент инерции меняет знак, а следовательно, существует такое положение осей, при котором центробежный момент равен нулю.

Оси, относительно которых центробежный момент инерции сечения обращается в нуль, называются главными осями , а главные оси, проходящие через центр тяжести сечения - главными центральными осями инерции сечения .

Моменты инерции относительно главных осей инерции сечения называются главными моментами инерции сечения и обозначаются через I 1 и I 2 причем I 1 > I 2 . Обычно, говоря о главных моментах, подразумевают осевые моменты инерции относительно главных центральных осей инерции.

Предположим, что оси u и v главные. Тогда

.

Уравнение (6.32) определяет положение главных осей инерции сечения в данной точке относительно исходных осей координат. При повороте осей координат изменяются также и осевые момента инерции. Найдем положение осей, относительно которых осевые моменты инерции достигают экстремальных значений. Для этого возьмем первую производную от I u по α и приравняем ее нулю:

.

К тому же результату приводит и условие dI v /d α . Сравнивая последнее выражение с формулой (6.32), приходим к заключению, что главные оси инерции являются осями, относительно которых осевые моменты инерции сечения достигают экстремальных значений.

Для упрощения вычисления главных моментов инерции формулы (6.29) - (6.31) преобразовывают, исключая из них с помощью соотношения (6.32) тригонометрические функции:

.

Знак плюс перед радикалом соответствует большему I 1 , а знак минус - меньшему I 2 из моментов инерции сечения.

Укажем на одно важное свойство сечений, у которых осевые моменты инерции относительно главных осей одинаковы. Предположим, что оси y и z главные (I yz =0), а I y =I z . Тогда согласно равенствам (6.29) - (6.31) при любом угле поворота осей α центробежный момент инерции I uv =0, а осевые I u = I v .

Итак, если моменты инерции сечения относительно главных осей одинаковы, то все оси, проходящие через ту же точку сечения, являются главными и осевые моменты инерции относительно всех этих осей одинаковы: I u = I v = I y = I z . Этим свойством обладают, например, квадратные, круглые, кольцевые сечения.

Формула (6.33) аналогична формулам (3.25) для главных напряжений. Следовательно, и главные моменты инерции можно определять графическим способом методом Мора.

Формулы (31.5), (32.5) и (34.5) позволяют установить, как изменяются величины моментов инерции сечения при повороте осей на произвольный угол а. Для некоторых значений угла a величины осевых моментов инерции достигают максимума и минимума. Экстремальные (максимальные и минимальные) значения осевых моментов инерции сечения называются главными моментами инерции. Оси, относительно которых осевые моменты инерции имеют экстремальные значения, называются главными осями инерции.

Из формулы (33.5) следует, что если осевой момент инерции относительно некоторой оси является максимальным (т. е. эта ось главная), то осевой момент инерции относительно перпендикулярной к ней оси является минимальным (т. е. эта ось также главная), так как сумма осевых моментов инерции относительно двух взаимно перпендикулярных осей не зависит от угла а.

Таким образом, главные оси инерции взаимно перпендикулярны.

Для нахождения главных моментов инерции и положения главных осей инерции определим первую производную по углу а от момента инерции [см. формулу (31.5) и рис. 19.5]:

Приравниваем этот результат нулю:

где - угол, на который надо повернуть координатные оси у чтобы они совпали с главными осями.

Сравнивая выражения (35.5) и (34.5), устанавливаем, что

Следовательно, относительно главных осей инерции центробежный момент инерции равен нулю. Поэтому главными осями инерции можно называть оси, относительно которых центробежный момент инерции равен нулю.

Как уже известно, центробежный момент инерции сечения относительно осей, из которых одна или обе совпадают с осями симметрии, равен нулю.

Следовательно, взаимно перпендикулярные оси, из которых одна или обе совпадают с осями симметрии сечения, всегда являются главными осями инерции. Это правило позволяет во многих случаях непосредственно (без расчета) устанавливать положение главных осей.

Решим уравнение (35.5) относительно угла

Уравнению (36.5) в каждом конкретном случае удовлетворяет ряд значений Из них выбирается одно любое. Если оно положительно, то для определения по нему положения одной из главных осей инерции ось следует повернуть на угол против вращения часовой стрелки, а если отрицательное - то по вращению часовой стрелки; другая главная ось инерции перпендикулярна к первой. Одна из главных осей инерции является осью максимум (относительно нее осевой момент инерции сечения максимален), а другая - осью минимум (относительно нее осевой момент инерции сечения минимален).

Ось максимум всегда составляет меньший угол с той из осей (у или ), относительно которой осевой момент инерции имеет большее значение. Это обстоятельство позволяет легко устанавливать, какая из главных осей инерции является осью максимум, а какая - осью минимум. Так, например, если а главные оси инерции и и v расположены, как это показано на рис. 20.5, то ось и является осью максимум (так как образует с осью у меньший угол, чем с осью ), а ось v - осью минимум.

При решении конкретной числовой задачи для определения главных моментов инерции можно выбранное значение угла и значение подставить в формулу (31.5) или (32.5).

Решим эту задачу в общем виде. По формулам из тригонометрии, используя выражение (36.5), найдем

Подставив эти выражения в формулу (31.5), после простых преобразований получим

Главные оси инерции можно провести через любую точку, взятую в плоскости сечения. Однако практическое значение для расчетов элементов конструкции имеют лишь главные оси, проходящие через центр тяжести сечения, т. е. главные центральные инерции. Моменты инерции относительно этих осей (главные центральные моменты инерции) в дальнейшем будем обозначать

Рассмотрим несколько частных случаев.

1. Если то формула (34.5) дает значение центробежного момента инерции относительно любой пары взаимно перпендикулярных осей, равное нулю, и, следовательно, любые оси, полученные путем поворота системы координат являются главными осями инерции (так же как оси ). В этом случае

2. Для фигур, имеющих более двух осей симметрии, осевые моменты инерции относительно всех центральных осей равны между собой. Действительно, направим одну из осей () по одной из осей симметрии, а другую - перпендикулярно к ней. Для этих осей Если фигура имеет более двух осей симметрии, то какая-либо из них составляет острый угол с осью . Обозначим такую ось а перпендикулярную к ней ось

Центробежный момент инерции так как ось является осью симметрии. По формуле же (34.5).

Задание 5.3.1: Для сечения известны осевые моменты инерции сечения относительно осей х1, у1, х2 : , . Осевой момент инерции относительно оси у2 равен…

1) 1000 см4; 2) 2000 см4; 3) 2500 см4; 4) 3000 см4.

Решение: Верный ответ - 3). Сумма осевых моментов инерции сечения относительно двух взаимно перпендикулярных осей при повороте осей на некоторый угол остается постоянной, то есть

После подстановки заданных значений получим.

Задание 5.3.2: Из указанных центральных осей сечения равнополочного уголка главными являются…

1) х3 ; 2) все; 3) х1 ; 4) х2 .

Решение: Верный ответ - 4). Для симметричных сечений оси симметрии являются главными осями инерции.

Задание 5.3.3: Главные оси инерции …

  • 1) можно провести только через точки, лежащие на оси симметрии;
  • 2) можно провести только через центр тяжести плоской фигуры;
  • 3) это оси, относительно которых моменты инерции плоской фигуры равны нулю;
  • 4) можно провести через любую точку плоской фигуры.

Решение: Верный ответ - 4). На рисунке показана произвольная плоская фигура. Через точку С проведены две взаимно перпендикулярные оси U и V .

В курсе сопротивления материалов доказывается, что если эти оси поворачивать, то можно определить такое их положение, при котором центробежный момент инерции площади обращается в ноль, а моменты инерции относительно этих осей принимают экстремальные значения. Такие оси называются главными осями.

Задание 5.3.4: Из указанных центральных осей главными осями сечения являются…

1) все; 2) х1 и х3 ; 3) х2 и х3 ; 4) х2 и х4 .

Решение: Верный ответ - 1). Для симметричных сечений оси симметрии являются главными осями инерции.

Задание 5.3.5: Оси, относительно которых центробежный момент инерции равен нулю, а осевые моменты принимают экстремальные значения, называются…

  • 1) центральными осями; 2) осями симметрии;
  • 3) главными центральными осями; 4) главными осями.

Решение: Верный ответ - 4). При повороте осей координат на угол б моменты инерции сечения меняются.

Пусть заданы моменты инерции сечения относительно координатных осей x , y . Тогда моменты инерции сечения в системе координатных осей u , v , повернутых на некоторый угол относительно осей x , y , равны

При некотором значении угла центробежный момент инерции сечения обращается в нуль, а осевые моменты инерции принимают экстремальные значения. Данные оси называются главными осями.

Задание 5.3.6: Момент инерции сечения относительно главной центральной оси хС равен…

1); 2) ; 3) ; 4) .

Решение: Верный ответ - 2)

Для вычисления используем формулу



Рассказать друзьям