Несамостоятельная проводимость воздуха. Экспериментальная установка

💖 Нравится? Поделись с друзьями ссылкой

Ионизация воздуха

Атмосферный воздух представляет собой смесь многих газообразных веществ. Кроме кислорода и азота, образующих основную массу воздуха, в его состав входят в небольшом количестве так называемые инертные газы, двуокись углерода и водяные пары. Помимо перечисленных газов, в воздухе содержится ещё большее или меньшее количество пыли и некоторые случайные примеси. Кислород, азот и инертные газы считаются постоянными составляющими частями воздуха, так как их содержание в воздухе практически повсюду одинаково. Наоборот, содержание 2 CO , водяных паров и пыли может изменяться в зависимости от различных условий. Как известно при обычных условиях давления и температуры различные газы, входящие в состав воздуха, являются диэлектриками.

В случае, если часть молекул ионизируется, то газ проводит ток.

Когда мы говорим, что воздух ионизирован, это значит, что некоторая очень большая часть газовых молекул воздуха несёт электрический заряд отрицательно или положительного знака. Заметим что в 1 см 3 воздуха при нормальных условиях содержится 2,710 19 молекул, среднее число лёгких аэроионов в естественных условиях в том же объёме равно приблизительно 500-700 парам.

Концентрация аэроионов в атмосфере выражается числом положительных и отрицательных ионов в 1 см 3 . Отсюда, проводимость атмосферы состоит из полярных проводимостей – положительной и отрицательной, т.е.

- проводимость атмосферы,

n – число положительных и отрицательных аэроионов,

k – подвижность положительных и отрицательных аэроионов,


Полная проводимость атмосферы:
= + = nk e + n k e
где:

Полная проводимость атмосферы

Положительная проводимость атмосферы

Отрицательная проводимость атмосферы

n - число положительных аэроионов

n - число отрицательных аэроионов

k - подвижность положительных аэроионов

k - подвижность отрицательных аэроионов

e – заряд аэроиона равный 4,810 -10 абсолютных электростатических единиц.
Плотность вертикального тока атмосферы можно выразить так:
I =
где:

Полная проводимость атмосферы,

I- плотность вертикального тока атмосферы,

Вертикальный градиент потенциала.
Отношение положительных аэроионов к отрицательным близ поверхности земли равно приблизительно 1,2 т.е.:
K = = 1,2
где:

K – коэффициент униполярности,

n - число отрицательных аэроионов.
Присутствие в воздухе некоторого избытка положительных аэроионов объясняется тем, что почвенный воздух, выходя наружу через капилляры почвы, оставляет на них преимущественно отрицательные аэроионы. Как известно, проводимость почвенного воздуха в 30 раз больше проводимости воздуха атмосферного.

Электрическая проводимость атмосферы в среднем составляет 110 4 электрических едениц.


Плотность вертикального тока проводимости атмосферы



Градиент потенциала электрического поля земли претерпевает резкие искажения благодаря разным неровностям на земной поверхности. Эквипотенциальные поверхности огибают препятствия и сгущаются над возвышенными предметами. Внутри зданий градиент потенциала электрического поля равен нулю, электрическое поле внутри зданий отсутствует даже при сильных атмосферно-электрических явлениях. Это обстоятельство учитывается при электроэффлювиальном методе аэроионофикации.

Ввиду того, что атмосферный воздух содержит, кроме газовых молекул, также и взвешенные в нём твёрдые или жидкие микрочастицы, адсорбирующие лёгкие аэроионы, ионизационное равновесие может быть выражено так:
q = n + n - + n + N - + n + N 0
где:

n - число положительных аэроионов,

N 0 - число нейтральных частиц.
Но так как число взвешенных микрочастиц обычно значительно больше числа лёгких аэроионов, ионизационное равновесие может быть представлено уравнением:
q = n + ( n - + N - + N 0) = / n t
где:

q – число аэроионов, образующихся в 1 см 3 /с,

n - число положительных аэроионов,

n - число отрицательных аэроионов,

Коэффициент рекомбинации лёгких аэроионов,

Коэффициент соединения лёгких аэроионов с заряженными частицами,

N - - число заряженных частиц,

N 0 - число нейтральных частиц,

t – промежуток времени,

n – общее количество ионов,

/ - постоянная исчезновения аэроионов.
Изменение числа аэроионов в атмосферном воздухе при изменении ионообразования выражается:

t – промежуток времени,

q – число аэроионов, образующихся в 1 см 3 /с,

/ - постоянная исчезновения аэроионов,

n – общее количество ионов.
В случае отсутствия ионообразования число ионов убывает со временем t по закону:
n = n 0 e

Средняя продолжительность существования лёгких аэроионов может быть выражена так:

Многочисленные измерения числа лёгких аэроионов воздуха, произведённые во многих странах сотнями физиков, геофизиков, метеорологов и врачей, нельзя признать безусловно достоверными. Счётчик аэроионов Эберта, с помощью которого произведены эти измерения, далеко не удовлетворяют предъявляемым к нему требованиям.

Методика измерения числа аэроионов в единице объёма до сих пор не получила окончательного и точного решения вследствие сложного комплекса факторов, сопутствующих ионным процессам в атмосферном воздухе.

Ионизация состоит в расщеплении молекул на электрон и ион (заряд +). Так как молекулы и атомы газа довольно устойчивы, то для ионизации нужно совершить работу против сил взаимодействия между электроном и ионом. Работа эта называется работой ионизации . Работа ионизации зависит от природы газа и от энергетического состояния электрона.

Работу ионизации можно определить потенциалом ионизации .
Потенциалом ионизации называется разность потенциалов, которую должен пройти электрон в ускоряющем электрическом поле, чтобы увеличение его энергии было равно работе ионизации.

, (1)

Потенциал ионизации (эВ),

Электрон-вольт (эВ) - энергия, которую приобретает частица, имеющая заряд, равный заряду электрона, прошедшая разность потенциалов 1 В. Эта внесистемная единица энергии в настоящее время допущена к применению в физике. 1эВ = 1,6021892·10 -19 Дж

Работа ионизации,

e – заряд электрона.


(2)

m- масса электрона (кг.)

V- скорость электрона (м/сек.)

e – заряд электрона.
Если кинетическая энергия электрона равна:

, (2.1)

Энергия W, которую приобретает электрон при прохождении разности потенциалов U равна:

W=eU (2.2)
А потенциал ионизации (энергия, обладая которой электрон при столкновении в другим электроном сможет ионизировать его) равна:

T+W, (2.3)
То подставив (2.1) и (2.2) в (2.3) получим:

U – разность потенциалов, которую необходимо пройти 1 электрону,

чтобы обладать энергией, достаточной для ионизации электрона, с которым он столкнётся..

e – заряд электрона,

m- масса электрона (кг.),

V- скорость электрона (м/сек.),

Потенциал ионизации (эВ).

В некоторых газах, например в кислороде, углекислом газе, парах воды,

отделившийся электрон при одной из ближайших встреч с другой нейтральной

молекулой соединяется с ней, превращая ее в электроотрицательный ион.

Присоединение, «прилипанием электрона к нейтральной молекуле приводит в

подобных случаях к такой перестройке ее электронной оболочки, что в итоге энергия молекулы, захватившей лишний электрон, оказывается меньше энергии нейтральной молекулы на некоторую величину, которую называют энергией сродства к электрону.

Она колеблется у большинства различных газов 0,75--4,5 эВ. В инертных газах - в аргоне, неоне, гелии, криптоне, ксеноне, а также в азоте - отрицательные ионы не возникают.
Значения для некоторых молекул различных компонентов атмосферного воздуха приведены в таблице 1.
Таблица 1.


Газ

Потенциал ионизации (эВ)

Ar

15.8

N 2

15.6

H 2

15.4

CO 2

14.4

CO

14.1

SO 2

13.1

H 2 O

12.6

O 2

12.5

NO 2

11.0

NO

9.5

Скорость электрона (километр в секунду), прошедшего без столкновений

разность потенциалов U (вольт), определяется выражением:

Подставляя в эту формулу ионизационные потенциалы, видим, что электрон ионизирует газовые молекулы, когда скорость его движения свыше 1000 км/с.

В зависимости от того, каким образом производится ионизация, различают следующие виды ионизации:

1) Фотоионизация (воздействие рентгеновскими Х-лучами и гамма-лучами);

Известно, что ионизация воздуха и образование частичных поверхностных разрядов (ЧПР) могут произойти, например, при фотоионизации. Чтобы воздействие излучения привело к ионизации воздуха, должно выполняться условие

с - скорость света;

Длина волны излучения;

h - постоянная Планка;

- энергия ионизации

Определяя длину волны излучения по приведенной формуле, получим

10–7 м, или 103 Å.

Волны с такими длинами лежат на границе ультрафиолетового и рентгеновского излучений (так называемый вакуумный ультрафиолет), видимый же свет не может привести к ионизации воздуха.

2) Ионизация соударения (воздействие
и частицами (электрон, позитрон);


  1. Термическая ионизация (нагревание до высокой температуры).
Вероятность термической ионизации воздуха при нормальной атмосферной температуре Т = 20 °C ничтожно мала. Степень ионизации воздуха, т. е. отношение числа ионизированных частиц к общему их количеству в единице объема при температуре Т = 10 000 К, составляет 0,02 Поэтому при такой низкой степени ионизации возникновение термической ионизации невозможно.

4) Ионизация электрическим полем. Для того чтобы образовались отрицательные и положительные ионы в результате электростатической эмиссии, необходимо внешнее электрическое поле напряженностью более 1000 кВ/см. Этот вид ионизации наиболее распространим и его применяют для искусственной ионизации воздуха в бытовых помещениях, при помощи приборов, которые называются аэроионизаторы. Далее мы будем рассматривать этот вид ионизации.

В результате всех этих видов ионизации возникают носители тока. В этом случае говорят о несамостоятельной проводимости газа. Если носители тока возникают в газе, которые обусловлены только приложенным к газу электрическим полем, проводимость называется самостоятельной .
Рассмотрим несамостоятельный газовый разряд. Газовым разрядом называется прохождение тока через газ.

Под действием внешнего ионизатора происходит расщепление молекулы газа на электрон и ион . Электрон может быть захвачен нейтральной молекулой, которая превратится в ион.

Число пар ионизированных молекул в единице объема V и в единицу времени t обозначим через
. Часть ионизированных молекул рекомбинируют , т.е. происходит нейтрализация разноименных пар при их встрече.

Наличие рекомбинации препятствует безграничному росту числа ионов в газе и объясняет установление определенной концентрации ионов спустя короткое время после начала действия внешнего ионизатора.

Вероятность встречи двух ионов разных знаков пропорциональна как числу положительных, так и числу отрицательных ионов. Поэтому количество рекомбинирующих за секунду в единице объема пар ионов
пропорционально квадрату числа имеющихся в единице объема пар ионов n :

Количество рекомбинирующих пар ионов (за секунду в единице объема).

r

n

Концентрация ионов в газе:


где:

n – число одновременно генерируемых ионов в газе

v – коэффициент рекомбинации.

При отсутствии внешнего поля наступает равновесие: число пар ионизированных молекул равно числу пар рекомбинированных молекул, т.е.

, (3)
откуда число пар ионов в единице объема равно:

.

V и в единицу времени t .

r – коэффициент пропорциональности.

n - число имеющихся в единице объема пар ионов.

Под действием космического излучения и следов радиоактивных веществ, имеющихся в земной коре в 1 см 3 при равновесной концентрации ионов значение порядка
. Эта концентрация недостаточна для того, чтобы обусловить заметную проводимость (чистый сухой воздух является очень хорошим изолятором).
Если, каждую секунду на электродах ионизатора нейтрализуется
пар ионов, то сила тока в цепи будет равна:

, (4)

I

Ионизатора,

S – площадь электродов,

l

Ток между электродами ионизатора:

j – плотность тока

S – площадь каждого электрода в пространстве, между которыми имеет место эффект генерации ионов

Из выражения (4) получим, что концентрация пар ионов, нейтрализованных на электродах в единицу времени равна

, (5)

Количество пар ионов которые нейтрализуется на электродахионизатора,

I - сила тока между излучающими электродами ионизатора,

– заряд носителя тока (иона),

S – площадь электродов,

l – расстояние между электродами;

j – плотность тока.

При наличии тока условие равновесия ионов запишется следующим образом:E = Закон Ома полученый из выражения (8).

j – плотность тока,

- удельная электропроводность газа,

E – напряженность поля.

Во второй области на кривой зависимости
линейная зависимость между плотностью тока и напряженностью нарушается вследствие того, что концентрация ионов в газе убывает.

В третьей области, начиная с некоторого значения напряженности плотность тока остается постоянной при увеличении Е. Это связано с тем, что при неизменной интенсивности ионизации в сильных электрических полях все ионы, образовавшиеся в единицу времени в газе достигают электродов. Значение плотности тока при этом называется плотностью тока насыщения :

. (10)

J нас – плотность тока насыщения,

– заряд носителя тока (иона),

Число пар ионизированных молекул в единице объема V и в единицу времени t ,

l – расстояние между электродами.

Реальное значение тока насыщения в воздухе весьма мало и составляет примерно J нас =10 -15 А/м 2 .

За областью насыщения лежит область резкого возрастания плотности тока (на рис. 2 эта область изображена штриховой линией). Это возрастание объясняется тем, что, начиная с некоторого значения Е , порождаемые внешним ионизатором электроны успевают за время свободного пробега приобрести энергию, достаточную для того, чтобы столкнувшись с молекулой, вызвать ее ионизацию, т.е.

, (11)
где
– кинетическая энергия электрона;
– работа ионизации молекулы. Возникшие при ионизации электроны, разогнавшись, вызывают в свою очередь ионизацию. Таким образом, происходит лавинообразное размножение первичных ионов, возникших при воздействии внешнего ионизатора. Однако процесс не утрачивает характера несамостоятельного разряда.

Градиент электрического потенциала в атмосфере

В обычный день над пустынной равниной или над морем электрический потенциал по мере подъема возрастает с каждым метром примерно на 100 в. В воздухе имеется вертикальное электрическое поле Е величиной 100 в/м. Знак поля отвечает отрицательному заряду земной поверхности. Это означает, что на улице потенциал на уровне вашего носа на 200 в выше, чем потенциал на уровне пяток! Можно, конечно, спросить: “Почему бы не поставить пару электродов на воздухе в метре друг от друга и не использовать эти 100 в для электрического освещения? ” А можно и удивиться: “Если действительно между моим носом и моей пяткой имеется напряжение 200 в, то почему же меня не ударяет током, как только я выхожу на улицу? ”

Ваше тело - довольно хороший проводник. Когда вы стоите на земле, вы вместе с нею образуете эквипотенциальную поверхность. Обычно эквипотенциальные поверхности параллельны земле но когда на земле оказываетесь вы, то они смещаются, Так что разность потенциалов между вашей макушкой и пятками почти равна нулю. С земли на вашу голову переходят заряды и изменяют поле вокруг вас. Часть из них разряжается ионами воздуха, но ионный ток очень мал, ведь воздух плохой проводник.

Как же измерить такое поле, раз оно искажается от всего, что в него попадает? Имеется несколько способов. Один способ - расположить изолированный проводник на какой-то высоте над землей и не трогать его до тех пор, пока он не приобретет потенциал воздуха. Если подождать довольно долго, то даже при очень малой проводимости воздуха заряды стекут с проводника (или натекут на него), уравняв его потенциал с потенциалом воздуха на этом уровне. Тогда мы можем опустить его к земле и измерить изменение его потенциала. Другой более быстрый способ - в качестве проводника взять ведерко воды, в котором имеется небольшая течь. Вытекая, вода уносит излишек заряда, и ведерко быстро приобретает потенциал воздуха. (Заряды, как вы знаете, растекаются по поверхности, а капли воды - это уходящие “куски поверхности”) Потенциал ведра можно измерить электрометром.

Имеется еще способ прямого измерения, градиента потенциала. Раз существует электрическое поле, то должен быть и поверхностный заряд на земле (у = е0Е). Если мы поместим у поверхности земли плоскую металлическую пластинку А и заземлим ее, то на ней появятся отрицательные заряды Если затем прикрыть пластинку другой заземленной проводящей крышкой В, то заряды появятся уже на крышке В, а на пластинке А исчезнут. Если мы измерим заряд, перетекающий с пластинки А на землю (скажем, с помощью гальванометра в цепи заземляющего провода) в тот момент, когда А закрывают крышкой, то мы найдем плотность поверхностного заряда, бывшего на А, а значит, и электрическое поле.

Электрические токи в атмосфере

Помимо градиента потенциала, можно измерять и другую величину - ток в атмосфере. Плотность его мала: через каждый квадратный метр, параллельный земной поверхности, проходит около 10-6 мка. Воздух, по-видимому, не идеальный изолятор; из-за этой проводимости от неба к земле все время течет слабый ток, вызываемый описанным нами электрическим полем.

Почему атмосфера имеет проводимость? Потому что в ней среди молекул воздуха попадаются ионы, например, молекулы кислорода, порой снабженные лишним электроном, а порой лишенные одного из своих. Эти ионы не остаются одинокими; благодаря своему электрическому полю они обычно собирают близ себя другие молекулы. Каждый ион тогда становится маленьким комочком, который вместе с другими такими же комочками дрейфует в поле, медленно двигаясь вверх или вниз, создавая ток, о котором мы говорили.

Откуда же берутся ионы? Сперва думали, что ионы создают радиоактивность Земли. (Было известно, что излучение радиоактивных веществ делает воздух проводящим, ионизуя молекулы воздуха) Частицы, выходящие из атомного ядра, скажем в-лучи, движутся так быстро, что они вырывают электроны у атомов, оставляя за собой дорожку из ионов. Такой взгляд, конечно, предполагает, что на больших высотах ионизация должна была бы становиться меньше, потому что вся радиоактивность - все следы радия, урана, натрия и т.д. - находится в земной пыли.

Чтобы проверить эту теорию, физики поднимались на воздушных шарах и измеряли ионизацию (Гесс, в 1912 г). Выяснилось, что все происходит как раз наоборот - ионизация на единицу объема с высотой растет две пластины периодически заряжались до потенциала V. Вследствие проводимости воздуха они медленно разряжались; быстрота разрядки измерялась электрометром) Этот непонятный результат был самым потрясающим открытием во всей истории атмосферного электричества. Открытие было столь важно, что потребовало выделения новой отрасли науки - физики космических лучей. А само атмосферное электричество осталось среди явлений менее удивительных. Ионизация, видимо, порождалась чем-то вне Земли; поиски этого неземного источника привели к открытию космических лучей. Мы не будем сейчас говорить о них и только скажем, что именно они поддерживают снабжение воздуха ионами. Хотя ионы постоянно уносятся, космические частицы, врываясь из мирового пространства, то и дело создают новые ионы.

Чтобы быть точными, мы должны отметить, что, кроме ионов, составленных из молекул, бывают и другие сорта ионов. Мельчайшие комочки почвы, подобно чрезвычайно тонким частичкам пыли, плавают в воздухе и заряжаются. Их иногда называют “ядрами”. Скажем, когда в море плещутся волны, мелкие брызги взлетают в воздух. Когда такая капелька испарится, в воздухе остается плавать маленький кристаллик NaCl. Затем эти кристаллики могут привлечь к себе заряды и стать ионами; их называют “большими ионами”.

Малые ионы, т. е. те, которые создаются космическими лучами, самые подвижные. Из-за того, что они очень малы, они быстро проносятся по воздуху, со скоростью около 1 см/сек в поле 100 в/м, или 1 в/см. Большие и тяжелые ионы движутся куда медленнее. Оказывается, что если “ядер” много, то они перехватывают заряды от малых ионов. Тогда, поскольку “большие ионы” движутся в поле очень медленно, общая проводимость уменьшается. Поэтому проводимость воздуха весьма переменчива - она очень чувствительна к его “засоренности”. Над сушей этого “сора” много больше, чем над морем, ветер подымает с земли пыль, да и человек тоже всячески загрязняет воздух. Нет ничего удивительного в том, что день ото дня, от момента к моменту, от одного места к другому проводимость близ земной поверхности значительно меняется. Электрическое поле в каждой точке над земной поверхностью тоже меняется, потому что ток, текущий сверху вниз, в разных местах примерно одинаков, а изменения проводимости у земной поверхности приводят к вариациям поля.

Проводимость воздуха, возникающая в результате дрейфа ионов, также быстро увеличивается с высотой. Происходит это по двум причинам. Во-первых, с высотой растет ионизация воздуха космическими лучами. Во-вторых, по мере падения плотности воздуха увеличивается свободный пробег ионов, так что до столкновения им удается дальше пройти в электрическом поле. В итоге на высоте проводимость резко подскакивает.

Сама плотность электрического тока в воздухе равна всего нескольким микромикроамперам на квадратный метр, но ведь на Земле очень много таких квадратных метров. Весь электрический ток, достигающий земной поверхности, равен примерно 1800 а. Этот ток, конечно, “положителен” - он переносит к Земле положительный заряд. Так что получается ток в 1800 а при напряжении 400 000 в. Мощность 700 Мвт!

При таком сильном токе отрицательный заряд Земли должен был бы вскоре исчезнуть. Фактически понадобилось бы только около получаса, чтобы разрядить всю Землю. Но с момента открытия в атмосфере электрического поля прошло куда больше получаса. Как же оно держится? Чем поддерживается напряжение? И между чем и чем оно? На одном электроде Земля, а что на другом? Таких вопросов множество.

Земля заряжена отрицательно, а потенциал в воздухе положителен. На достаточно большой высоте проводимость так велика, что вероятность изменений напряжения по горизонтали становится равной нулю. Воздух при том масштабе времени, о котором сейчас идет речь, фактически превращается в проводник. Это происходит на высоте около 50 км. Это еще не так высоко, как то, что называют “ионосферой”, где имеется очень большое количество ионов, образуемых за счет фотоэффекта от солнечных лучей. Для наших целей можно, обсуждая свойства атмосферного электричества, считать, что на высоте примерно 50 км воздух становится достаточно водящим и там существует практически проводящая сфера, из которой вытекают вниз токи. Вопрос в том, как держится там положительный заряд. Как он накачивается обратно? Раз он стекает на Землю, то должен же он как-то перекачиваться обратно? Долгое время это было одной из главных загадок атмосферного электричества.

Любая информация на этот счет может дать ключ к загадке или по крайней мере хоть что-то сообщить о ней. Вот одно интересное явление: если мы измеряем ток (а он, как мы знаем, устойчивее, чем градиент потенциала), скажем над морем, и при тщательном соблюдении предосторожностей, очень аккуратно все усредняем и избавляемся от всяких ошибок, то мы обнаруживаем, что остаются все же какие-то суточные вариации. Среднее по многим измерениям над океанами обладает временной вариацией Ток меняется приблизительно на ±15% и достигает наибольшего значения в 7 часов вечера по лондонскому времени. Самое странное здесь то, что, где бы вы ни измеряли ток - в Атлантическом ли океане, в Тихом ли или в Ледовитом, - его часы пик бывают тогда, когда часы в Лондоне показывают 7 вечера! Повсюду во всем мире ток достигает максимума в 19.00 по лондонскому времени, а минимума - в 4.00 по тому же времени. Иными словами, ток зависит от абсолютного земного времени, а не от местного времени в точке наблюдения. В одном отношении это все же не так уж странно; это вполне сходится с нашим представлением о том, что на самом верху имеется очень большая горизонтальная проводимость, которая и исключает местные изменения разности потенциалов между Землей и верхом. Любые изменения потенциала должны быть всемирными, и так оно и есть. Итак, теперь мы знаем, что напряжение “вверху” с изменением абсолютного земного времени то поднимается, то падает на 15%.

Происхождение токов в атмосфере

Теперь нужно ответить на вопрос об источнике больших отрицательных токов, которые должны течь от “верха” к земной поверхности, чтобы поддержать ее отрицательный заряд. Где же те батареи, которые это делают? Это гроза или вернее молнии. Оказывается, вспышки молний не “разряжают” той разности потенциалов, о которой мы говорили (и как могло бы на первый взгляд показаться). Молнии снабжают Землю отрицательным зарядом. Если мы увидали молнию, то можно поспорить на десять против одного, что она привела на Землю большое количество отрицательных зарядов. Именно грозы заряжают Землю в среднем током в 1800 А электричества, которое затем разряжается в районах с хорошей погодой.

На Земле каждые сутки гремит около 300 гроз. Их-то и можно считать теми батареями, которые накачивают электричество в верхние слои атмосферы и сохраняют разность потенциалов. А теперь учтите географию - полуденные грозы в Бразилии, тропические - в Африке и т.д. Ученые сделали оценки того, сколько молний ежесекундно бьет в Землю; нужно ли говорить, что их оценки более или менее согласуются с измерениями разности потенциалов: общая степень грозовой деятельности достигает на всей Земле максимума в 19.00 по лондонскому времени. Однако оценки грозовой деятельности делать очень трудно; сделаны они были только после того, как стало известно, что такие вариации должны существовать. Трудность заключается в том, что в океанах, да и повсюду в мире не хватает наблюдений, их мало, чтобы точно установить число гроз. Но те ученые, которые думают, что они “все учли правильно”, уверяют, что максимум деятельности приходится на 19.00 по гринвичскому среднему времени.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-10-12

Газы в нормальном состоянии являются хорошими диэлектриками (например чистый, неионизированный воздух). Однако, если газы содержат в себе влагу с примесью органических и неорганических частиц и при этом они ионизированы, то они проводят электричество.

Во всех газах еще до воздействия на них электрического напряжения всегда имеется некоторое количество электрически заряженных частиц - электронов и ионов, которые находятся в беспорядочном тепловом движении. Это могут быть заряженные частицы газа, а также заряженные частицы твердых и жидких веществ - примесей, находящихся, например, в воздухе.

Образование электрически заряженных частиц в газообразных диэлектриках вызывается ионизацией газа внешними источниками энергии (внешними ионизаторами) : космическими и солнечными лучами, радиоактивными излучениями Земли и др.

Электропроводимость газов зависит главным образом от степени их ионизации, которая может быть осуществлена различными способами. В основном ионизация газов осуществляется в результате отщепления электронов от нейтральной молекулы газа.

Выделившийся из молекулы газа электрон перемешается в междумолекулярном пространстве газа, и здесь в зависимости от рода газа он может сохранить относительно долго "самостоятельность" своего движения (например, в таких газах, кик водород H 2 , азот N 2 ) или, наоборот, быстро проникнуть в нейтральную молекулу, превратив ее в отрицательный ион (например, в кислороде).

Наибольший эффект ионизации газов достигается путем облучения их рентгеновыми, катодными лучами или лучами, испускаемыми радиоактивными веществами.

Атмосферный воздух летом весьма интенсивно ионизируется под влиянием солнечных лучей. Влага, находящаяся в воздухе, конденсируется на его ионах, образуя мельчайшие капельки воды, заряженные электричеством. В конечном итоге из отдельных электрически заряженных капелек воды образуются грозовые тучи, сопровождаемые молниями, т. с. электрическими разрядами атмосферного электричества.


Процесс ионизации газа внешними ионизаторами заключается в том, что они сообщают часть энергии атомам газа. При этом валентные электроны приобретают дополнительную энергию и отделяются от своих атомов, которые превращаются в положительно заряженные частицы - положительные ионы .

Образовавшиеся свободные электроны могут длительно сохранять самостоятельность движения в газе (например, в водороде, азоте) или через некоторое время они присоединяются к электрически нейтральным атомам и молекулам газа, превращая их в отрицательно заряженные ионы .

Появление электрически заряженных частиц в газе может быть также вызвано выходом электронов с поверхности металлических электродов при их нагревании или воздействии на них лучистой энергии. Находясь в беспорядочном тепловом движении, некоторая часть противоположно заряженных (электронов) и положительно заряженных (ионов) частиц воссоединяется друг с другом и образует электрически нейтральные атомы и молекулы газа. Этот процесс называется восстановлением или рекомбинацией .

Если между металлическими электродами (диски, шары) заключить какой-то объем газа, то при приложении к электродам электрического напряжения на заряженные частицы в газе будут действовать электрические силы - напряженности электрического поля .

Под действием этих сил электроны у и ионы будут перемещаться от одного электрода к другому, создавая электрический ток в газе .

Ток в газе будет тем больше, чем разного диэлектрика больше заряженных частиц образуется в нем в единицу времени и чем большую скорость приобретают они под действием сил электрического поля.

Ясно, что с повышением напряжения, приложенного к данному объему газа, электрические силы, действующие на электроны и ионы, увеличиваются. При этом скорость заряженных частиц, а следовательно, и ток в газе возрастают.

Изменение величины тока в зависимости от напряжения, приложенного к объему газа, выражается графически в виде кривой, называемой вольтамперной характеристикой .

Вольтамперная характеристика для газообразного диэлектрика

Вольтамперная характеристика показывает, что в области слабых электрических полей, когда электрические силы, действующие на заряженные частицы, относительно невелики (область I на графике), ток в газе возрастает пропорционально величине приложенного напряжения. В этой области изменение тока происходит согласно закону Ома.

С дальнейшим ростом напряжения (область II) пропорциональность между током и напряжением нарушается. В этой области ток проводимости не зависит от напряжения. Здесь происходит накопление энергии заряженными частицами газа - электронами и ионами.

С дальнейшим же повышением напряжения (область III) скорость заряженных частиц резко возрастает, вследствие чего происходят частые соударения их с нейтральными частицами газа. При этих упругих соударениях электроны и ионы передают часть накопленной ими энергии нейтральным частицам газа. В результате электроны отделяются от своих атомов. При этом образуются новые электрически заряженные частицы: свободные электроны и ионы.

Ввиду того что летящие заряженные частицы соударяются с атомами и молекулами газа очень часто, образование новых электрически заряженных частиц происходит весьма интенсивно. Этот процесс называется ударной ионизацией газа .

В области ударной ионизации (область III на рисунке) ток в газе интенсивно возрастает при малейшем повышении напряжения. Процесс ударной ионизации в газообразных диэлектриках сопровождается резким уменьшением величины удельного объемного сопротивления газа и возрастанием .

Естественно, что газообразные диэлектрики могут использоваться при напряжениях, меньших тех значений, при которых возникает процесс ударной ионизации. В этом случае газы являются очень хорошими диэлектриками, у которых удельное объемное сопротивление очень велико (1020 омх см), а тангенс угла диэлектрических потерь очень мал (tg δ ≈ 10 -6 ). Поэтому газы, в частности воздух, используются в качестве диэлектриков в образцовых конденсаторах, газонаполненных кабелях и .

В любой изоляционной конструкции в качестве элемента изоляции присутствует в той или иной мере воздух или какой-либо иной газ. Провода воздушных линий (ВЛ), шины распределительных устройств, выводы трансформаторов и различных аппаратов высокого напряжения отделены друг от друга промежутками, единственной изолирующей средой в которых является воздух.

Нарушение электрической прочности таких конструкций может произойти как путем пробоя диэлектрика, из которого изготовлены изоляторы, так и в результате разряда в воздухе или вдоль поверхности диэлектрика.

В отличие от пробоя изолятора, который приводит к полному выходу его из строя, разряд вдоль поверхности обычно повреждением не сопровождается. Следовательно, если изоляционную конструкцию выполнить таким образом, чтобы напряжение перекрытия по поверхности или разрядные напряжения в воздухе были меньше пробивных напряжений изоляторов, то фактическая электрическая прочность таких конструкций будет определяться электрической прочностью воздуха.

В указанных выше случаях воздух имеет значение как естественная газовая среда, в которой находятся изоляционные конструкции. Наряду с этим воздух или иной газ часто применяется в качестве одного из основных изоляционных материалов при выполнении изоляции кабелей, конденсаторов, трансформаторов и других электрических аппаратов.

Для обеспечения надежной и безаварийной работы изоляционных конструкций необходимо знать, как влияют на электрическую прочность газа различные факторы, такие, как форма и длительность действия напряжения, температура и давление газа, характер электрического поля и т. п.

Помимо градиента потенциала, можно измерять и другую величину - ток в атмосфере. Плотность его мала: через каждый квадратный метр, параллельный земной поверхности, проходит около . Воздух, по-видимому, не идеальный изолятор; из-за этой проводимости от неба к земле все время течет слабый ток, вызываемый описанным нами электрическим полем.

Почему атмосфера имеет проводимость? Потому что в ней среди молекул воздуха попадаются ионы, например, молекулы кислорода, порой снабженные лишним электроном, а порой лишенные одного из своих. Эти ионы не остаются одинокими; благодаря своему электрическому полю они обычно собирают близ себя другие молекулы. Каждый ион тогда становится маленьким комочком, который вместе с другими такими же комочками дрейфует в поле, медленно двигаясь вверх или вниз, создавая ток, о котором мы говорили.

Откуда же берутся ионы? Сперва думали, что ионы создает радиоактивность Земли. (Было известно, что излучение радиоактивных веществ делает воздух проводящим, ионизуя молекулы воздуха.) Частицы, выходящие из атомного ядра, скажем. -лучи, движутся так быстро, что они вырывают электроны у атомов, оставляя за собой дорожку из ионов. Такой взгляд, конечно, предполагает, что на больших высотах ионизация должна была бы становиться меньше, потому что вся радиоактивность - все следы радия, урана, натрия и т. д.- находится в земной пыли.

Фигура. 9.3. Измерение проводимости воздуха, вызываемой движением ионов.

Чтобы проверить эту теорию, физики поднимались на воздушных шарах и измеряли ионизацию (Гесс, в 1912г.). Выяснилось, что все происходит как раз наоборот - ионизация на единицу объема с высотой растет! (Прибор был похож на изображенный на фиг. 9.3. Две пластины периодически заряжались до потенциала . Вследствие проводимости воздуха они медленно разряжались; быстрота разрядки измерялась электрометром.) Этот непонятный результат был самым потрясающим открытием во всей истории атмосферного электричества. Открытие было столь важно, что потребовало выделения новой отрасли науки - физики космических лучей. А само атмосферное электричество осталось среди явлений менее удивительных. Ионизация, видимо, порождалась чем-то вне Земли; поиски этого неземного источника привели к открытию космических лучей. Мы не будем сейчас говорить о них и только скажем, что именно они поддерживают снабжение воздуха ионами. Хотя ионы постоянно уносятся, космические частицы, врываясь из мирового пространства, то и дело сотворяют новые ионы.

Чтобы быть точными, мы должны отметить, что, кроме ионов, составленных из молекул, бывают и другие сорта ионов. Мельчайшие комочки почвы, подобно чрезвычайно тонким частичкам пыли, плавают в воздухе и заряжаются. Их иногда называют «ядрами». Скажем, когда в море плещутся волны, мелкие брызги взлетают в воздух. Когда такая капелька испарится, в воздухе остается плавать маленький кристаллик . Затем эти кристаллики могут привлечь к себе заряды и стать ионами; их называют «большими ионами».

Малые ионы, т. е. те, которые создаются космическими лучами, самые подвижные. Из-за того, что они очень малы, они быстро проносятся по воздуху, со скоростью около в поле , или . Большие и тяжелые ионы движутся куда медленнее. Оказывается, что если «ядер» много, то они перехватывают заряды от малых ионов. Тогда, поскольку «большие ионы» движутся в поле очень медленно, общая проводимость уменьшается. Поэтому проводимость воздуха весьма переменчива - она очень чувствительна к его «засоренности». Над сушей этого «сора» много больше, чем над морем, ветер подымает с земли пыль, да и человек тоже всячески загрязняет воздух. Нет ничего удивительного в том, что день ото дня, от момента к моменту, от одного места к другому проводимость близ земной поверхности значительно меняется. Электрическое поле в каждой точке над земной поверхностью тоже меняется, потому что ток, текущий сверху вниз, в разных местах примерно одинаков, а изменения проводимости у земной поверхности приводят к вариациям поля.

Проводимость воздуха, возникающая в результате дрейфа ионов, также быстро увеличивается с высотой. Происходит это по двум причинам. Во-первых, с высотой растет ионизация воздуха космическими лучами. Во-вторых, по мере падения плотности воздуха увеличивается свободный пробег ионов, так что до столкновения им удается дальше пройти в электрическом поле. В итоге на высоте проводимость резко подскакивает.

Сама плотность электрического тока в воздухе равна всего нескольким микромикроамперам на квадратный метр, но ведь на Земле очень много таких квадратных метров. Весь электрический ток, достигающий земной поверхности, равен примерно . Этот ток, конечно, «положителен» - он переносит к Земле положительный заряд. Так что получается ток в при напряжении . Мощность !

При таком сильном токе отрицательный заряд Земли должен был бы вскоре исчезнуть. Фактически понадобилось бы только около получаса, чтобы разрядить всю Землю. Но с момента открытия в атмосфере электрического поля прошло куда больше получаса. Как же оно держится? Чем поддерживается напряжение? И между чем и чем оно? На одном электроде Земля, а что на другом? Таких вопросов множество.

Земля заряжена отрицательно, а потенциал в воздухе положителен. На достаточно большой высоте проводимость так велика, что вероятность изменений напряжения по горизонтали становится равной нулю. Воздух при том масштабе времени, о котором сейчас идет речь, фактически превращается в проводник. Это происходит на высоте около . Это еще не так высоко, как-то, что называют «ионосферой», где имеется очень большое количество ионов, образуемых за счет фотоэффекта от солнечных лучей. Для наших целей можно, обсуждая свойства атмосферного электричества, считать, что на высоте примерно воздух становится достаточно проводящим и там существует практически проводящая сфера, из которой вытекают вниз токи. Положение дел изображено на фиг. 9.4. Вопрос в том, как держится там положительный заряд. Как он накачивается обратно? Раз он стекает на Землю, то должен же он как-то перекачиваться обратно? Долгое время это было одной из главных загадок атмосферного электричества.

Фигура. 9.4. Типичные характеристики электрических свойств чистой атмосферы.

Любая информация на этот счет может дать ключ к загадке или по крайней мере хоть что-то сообщить о ней. Вот одно интересное явление: если мы измеряем ток (а он, как мы знаем, устойчивее, чем градиент потенциала), скажем над морем, и при тщательном соблюдении предосторожностей, очень аккуратно все усредняем и избавляемся от всяких ошибок, то мы обнаруживаем, что остаются все же какие-то суточные вариации. Среднее по многим измерениям над океанами обладает временной вариацией примерно такой, какая показана на фиг. 9.5. Ток меняется приблизительно на ±15% и достигает наибольшего значения в 7 часов вечера по лондонскому времени. Самое странное здесь то, что, где бы вы ни измеряли ток - в Атлантическом ли океане, в Тихом ли или в Ледовитом, - его часы пик бывают тогда, когда часы в Лондоне показывают 7 вечера! Повсюду во всем мире ток достигает максимума в 19.00 по лондонскому времени, а минимума - в 4.00 по тому же времени. Иными словами, ток зависит от абсолютного земного времени, а не от местного времени в точке наблюдения. В одном отношении это все же не так уж странно; это вполне сходится с нашим представлением о том, что на самом верху имеется очень большая горизонтальная проводимость, которая и исключает местные изменения разности потенциалов между Землей и верхом. Любые изменения потенциала должны быть всемирными, и так оно и есть. Итак, теперь мы знаем, что напряжение «вверху» с изменением абсолютного земного времени то подымается, то падает на 15%.

Фигура. 9.3. Средняя суточная вариация градиента потенциала атмосферы в ясную погоду над океанами.

Общие понятия

По сравнению с электропроводностью проводников (см. разд. 2) и полупроводников (см. разд. 3) электропроводность диэлектриков имеет ряд характерных особенностей.

Все диэлектрики под воздействием не изменяющегося во времени напряжения пропускают некоторый, хотя и весьма незначительный ток, называемый током утечки (I), который складывается из двух составляющих: объемного тока () и поверхностного тока () (рис. 4.1).

Следовательно, общая проводимость диэлектрика () складывается из объемной () и поверхностной () проводимостей:

Величины, обратные указанным проводимостям, соответственно называют объемным () и поверхностным () сопротивлениями.

Следующей характерной особенностью электропроводности диэлектриков является постепенное спадание тока со временем (рис. 4.2). При подключении диэлектрика к не изменяющемуся во времени напряжению в начальный промежуток времени в цепи протекает быстро спадающий ток смещения (I см) плотность которого равна:

Этот ток спадает за время 10 13 …10 15 с порядка постоянной времени () схемы «источник-образец». То есть в первом приближении можно сказать, что этот ток обусловливается зарядкой геометрической емкости. Однако общий ток продолжает изменяться и после этого. Это спадание может продолжаться в течение нескольких минут и даже часов и обусловлено перераспределением объемных зарядов , а также установлением медленных (в основном) и быстрых видов поляризации. Эту спадающую часть тока называют током абсорбции ().

Со временем, когда произойдет зарядка геометрической емкости, т.е. установятся все виды поляризации, произойдет перераспределение объемных зарядов, и в диэлектрике останется не изменяющийся во времени электрический ток – сквозной ток (), который обусловлен поверхностной и объемной электропроводимостями:

При изменении удельного сопротивления диэлектриков ток абсорбции необходимо исключить, выдерживая образец под напряжением в течение некоторого времени.

Для сравнительной оценки различных диэлектриков в отношении их объемной и поверхностной электропроводности пользуются значениями удельного объемного сопротивления (), и удельного поверхностного сопротивления (). По удельному, объемному сопротивлению может быть определена удельная объемная проводимость :

а по удельному поверхностному сопротивлению – удельная поверхностная проводимость :

Объемное удельное сопротивление образца диэлектрика произвольной формы может быть найдено из выражения:

где – объемное сопротивление образца произвольной формы, Ом; – геометрический параметр, м.

Так, для плоского образца, у которого (см. разд. 1), удельное сопротивление равно:

где – площадь поперечного сечения образца (площадь измерительного электрода), м 2 ; – толщина образца, м.

Объемная удельная проводимость () измеряется в сименсах на метр ().

Удельное поверхностное сопротивление (в омах) может быть найдено из выражения:

, ………………..(4.6)

где – поверхностное сопротивление образца, Ом; – длина электродов, м; – расстояние между электродами, м.

Удельная поверхностная проводимость измеряется в сименсах.

Электропроводность газов

Электропроводность газов обусловлена наличием в них некоторого количества заряженных частиц. В нормальных условиях число заряженных частиц (ионов газа или твердых и жидких примесей, находящихся во взвешенном состоянии) в 1 м 3 атмосферного воздуха не превышает нескольких десятков миллионов.

Происхождение носителей заряда в газах объясняется различными факторами:

· радиоактивным излучением Земли;

· радиацией, проникающей из космического пространства;

· излучением Солнца;

· иногда тепловым движением молекул и т.п.

При поглощении энергии бомбардирующей частицы молекула газа теряет электрон и превращается в положительный ион. Высвобождаемый при этом электрон «прилипает» к нейтральной молекуле, образуя отрицательный ион.

В ряде случаев концентрация свободных носителей заряда может достигать очень больших значений. Это обычно связано с фотоионизацией молекул газа. Такая ионизация может происходить, например, при воздействии ионизирующих излучений: рентгеновских и гамма-лучей, потоков нейтронов и т.п. Заряженные ионы так же, как и окружающие их не имеющие электрического заряда молекулы газа, совершают беспорядочные тепловые движения, и вследствие диффузии происходит выравнивание концен

трации ионов в газе. При встрече положительных и отрицательных ионов происходит их рекомбинация. В стационарном случае, когда число ионов не изменяется с течением времени, между процессами генерации и рекомбинации заряженных частиц устанавливается динамическое равновесие.

Вычислим удельную проводимость газа. При наложении внешнего электрического поля положительные и отрицательные ионы, преодолевая сопротивление трения газа, будут двигаться между электродами со скоростями соответственно:

где и – подвижности положительного и отрицательного ионов.

Зависимость между числом имеющихся в 1 м 3 газа положительных () и отрицательных () ионов и числом ионов, рекомбинирующих в 1 м 3 газа за время 1 с (), можно представить так:

где – коэффициент рекомбинации ионов газа, м 3 /с. Для воздуха, например, м 3 /с.

В стационарном случае

,

так что .

Если напряженность поля (Е) очень мала, так что протекающий ток не меняет концентрацию ионов в газе, плотность тока может быть определена из выражения:

Принимая во внимание, что , получим выражение для удельной проводимости газа:

. (4.9)

Удельная проводимость воздуха в слабых полях составляет около 10 -15 См/м.

Из формулы (4.8) видно, что при малых значениях напряженности внешнего электрического поля, когда , , и можно считать постоянными, плотность тока в газе прямо пропорциональна напряженности приложенного поля, т.е. в этих условиях соблюдается закон Ома (рис. 4.3, участок 0А). Однако при дальнейшем возрастании напряженности приложенного поля из-за возрастания скорости дрейфа ионов вероятность их рекомбинации уменьшается, и в основном все ионы устремятся к электродам. Это ток насыщения (участок АВ).

Для воздуха при расстоянии между электродами 0,01 м насыщение достигается при напряженности поля 0,5 В/м. Плотность тока насыщения в воздухе (при обычных условиях) весьма мала и достигает 10 -14 А/м 2 .

Участок 0АВ называют областью несамостоятельной электропроводности, так как электропроводность (концентрация свободных носителей зарядов) определяется мощностью внешних ионизаторов.

Значение удельного сопротивления воздуха () составляет порядка 10 18 Ом∙м. При дальнейшем повышении напряженности поля В/м (рис. 4.3, участок ВС) происходит значительное повышение плотности тока вследствие процессов ударной ионизации молекул электронами в сильном электрическом поле вплоть до пробоя газового промежутка. Участок ВС – называют областью самостоятельной электропроводности .

Электропроводность жидкостей

Электропроводность жидкостей обусловлена ионами, образующимися при диссоциации молекул самой жидкости или ее примесей. В связи с увеличением энергии хаотического теплового движения молекул степень ионизации и концентрации ионов растет с повышением температуры по экспоненциальному закону:

, (4.10)

где W – энергия диссоциации. Отсюда удельная проводимость равна:

где n – заряд иона; и – подвижности положительных и отрицательных ионов соответственно; А – константа.

Логарифм проводимости жидкости линейно уменьшается с увеличением обратной абсолютной температуры 1/Т (рис.


4.4), как и в собственных полупроводниках. Однако в отличие от полупроводников, для которых , ( – ширина запрещенной зоны), показатель экспоненты в жидкостях определяется энергией их диссоциации:

Удельное сопротивление жидкостей равно:

, (4.12)

где В – константа.

По аналогичному закону изменяется вязкость жидкостей (). Зависимость жидкостей объясняется как изменением , так и изменением температурной диссоциации молекул .

Диссоциация молекул легче происходит в полярных жидкостях, чем в неполярных. Ввиду того что энергия диссоциации полярных жидкостей значительно меньше, чем неполярных, их удельная проводимость существенно выше. Так, для сильно полярных жидкостей (дистиллированной воды, этилового спирта, ацетона) , для слабо полярных (совола, касторового масла) , для неполярных (бензола, трансформаторного масла) Ом∙м. В неполярных жидкостях молекулы основного вещества практически не диссоциируют на ионы, и их электропроводность обусловлена примесями особенно полярных веществ.

В жидкостях (и газах) с примесями иногда наблюдается молионная электропроводность , характерная для коллоидных систем , которые представляют собой тесную смесь двух фаз веществ; причем одна фаза в виде мелких частиц (капель, зерен, пылинок и т.п.) равномерно взвешена в другой. Из коллоидных систем наиболее часто встречаются в электроизоляционной технике эмульсии (обе фазы – жидкости) и суспензии (дисперсная фаза – твердое вещество, дисперсионная среда – жидкость). Ста

бильность эмульсий и суспензий, т.е. способность их длительно сохраняться без оседания дисперсной фазы на дно сосуда (или всплывания ее на поверхность) вследствие различия плотностей обеих фаз, объясняется наличием на поверхности частиц дисперсной фазы электрических зарядов (при одноименном заряде частицы взаимно отталкиваются). Такие заряженные частицы дисперсной фазы и называют молионами . При наложении на коллоидную систему электрического поля молионы приходят в движение, что выражается в виде электрофореза .

Примеры практического использования электрофореза – покрытие металлических предметов каучуком и смолами из их суспензий, обезвоживание различных материалов в электрическом поле и др. В отличие от электролиза при электрофорезе не наблюдается образования новых веществ, а лишь меняется относительная концентрация дисперсной фазы в различных частях объема вещества. Молионная электропроводность присуща жидким лакам и компаундам, увлажненным маслам и т.п. Ее вклад в проводимость, как и вклад ионной электропроводности, зависит от вязкости жидкости.

Электропроводность твердых диэлектриков

Электропроводность диэлектриков в отличие от электропроводности полупроводников чаще всего носит не электронный, а ионный характер. Это связано с тем, что ширина запрещенной зоны в диэлектриках , лишь ничтожное количество электронов может отрываться от своих атомов за счет теплового движения. Ионы же часто оказываются слабо связанными в узлах решетки, и энергия W, необходимая для их срыва, сравнима с kT, Например, в кристалле NaCl эВ, а энергия отрыва иона натрия эВ. Поэтому, несмотря на меньшую подвижность ионов () по сравнению с подвижностью электронов (), ионная проводимость оказывается больше электронной за счет значительно большей концентрации свободных ионов:

. (4.13)

Носителями заряда в диэлектриках обычно оказываются ионы малых размеров, подвижность которых выше:

· протоны в водородсодержащих соединениях (в полимерах, кристаллах типа KH 2 PO 4 и других с водородными связями);

· ионы натрия (в NaCl и в содержащем натрий стекле) и т.д.

При этом следует отметить, что число диссоциированных (сорванных) ионов () с изменением температуры изменяется по экспоненциальному закону:

, (4.14)

где – общее число ионов i-го типа; – энергия диссоциации иона i-го типа; кТ – тепловая энергия.

Удельная электрическая проводимость твердых диэлектриков, как и полупроводников, растет с ростом температуры по экспоненциальному за­кону:


Однако зависимость часто обусловлена не только экспоненциальным ростом концентрации носителей (рис. 4.5, б)

но и ростом подвижности:

µ~exp(-W n /kT),

где W n – энергия перемещения иона, определяющая переход его из одного равновесного состояния в другое). Это связано с тем, что дрейфовая подвижность ионов мала и осуществляется путем их перескока с ловушки на ловушку, разделенных потенциальным барьером W n (так называемая «прыжковая» электропроводность). Вероятность таких тепловых перескоков прямо пропорциональна exp(-W n /kT) (рис. 4.5, а).

Обычно в диэлектрике имеется несколько видов носителей заряда. Например, кроме ионов основного вещества могут быть слабо связанные ионы примесей. В этом случае удельная проводимость складывается из собственной проводимости с энергией активации (W) и примесной проводимости с энергией активации (W np):

; (4.16)

,

где — коэффициент, объединяющий постоянные ( – заряд i-го носителя; – концентрацию i-го носителя; – подвижность i-го носителя); W i — энергия активации.

В широком диапазоне температур зависимость логарифма удельной проводимости (γ) от обратной величины абсолютной температуры (Т) должна состоять из двух прямолинейных участков с различными значениями угла наклона к оси абсцисс (рис. 4.6). При температуре выше точки излома А электропроводность определяется в основном собственными дефектами – это область высокотемпературной , или собственной электропроводности . Ниже излома, в области низкотемпературной , или примесной электропроводности , зависимость более пологая.

В отличие от трудно воспроизводимой низкотемпературной области электропроводности, определяемой в основном природой и концентрацией примесей, значение собственной удельной проводимости не зависит от удельной проводимости и не зависит от примесей, хорошо воспроизводимо и является физическим параметром данного соединения.

Температура, при которой наблюдается излом зависимости , сильно зависит от степени чистоты и совершенства материала. При увеличении содержания примесей и дефектов примесная удельная проводимость растет и оказывается существенной при более высоких температурах (рис. 4.6). По наклонам участков прямых зависимости можно определить энергию активации носителей заряда и их природу.

Ионная электропроводность сопровождается переносом вещества: положительные ионы движутся к катоду, а отрицательные к аноду. Электролиз особенно ярко выражен при повышенных температурах, когда ρ мало, и при приложении высоких постоянных напряжений. По выделившемуся на электродах веществу можно определить характер носителей заряда. У диэлектриков с чисто ионным характером электропроводности строго выполняется закон Фарадея – закон пропорциональности между количеством пропущенного электричества и количеством выделившихся веществ.

Некоторые диэлектрики (например, и другие титансодержащие керамические материалы) обладают электронной или дырочной электропроводностью. Однако носителями часто являются электроны не основного вещества, а примесей и дефектов. В титансодержащей керамике при высокотемпературном синтезе появляются в значительном количестве кислородные вакансии, отдающие слабо связанные электроны или дырки. От них и зависит наблюдаемая электропроводность.

Твердые пористые диэлектрики при наличии в них влаги, даже в ничтожных количествах, резко увеличивают свою электропроводность (рис 4.7). На участке кривой АВ значение сопротивления снижается в результате изменения степени диссоциации молекул воды и молекул диэлектрика в водном растворе на ионы. Участок ВС обусловлен процессами сушки, а на участке СД происходит диссоциация молекул диэлектрика на ионы.

Мы рассматривали электропроводимость твердых диэлектриков при относительно невысоких значениях напряженности электрического поля. При достаточно больших напряженностях электрического поля в диэлектриках появляется электронная составляющая электропроводности, быстро возрастающая с увеличением напряженности электрического поля, в связи с чем наблюдается нарушение закона Ома. При напряженностях электрического поля В/м, т.е. близких к пробивным напряженностям поля, зависимость электропроводности от величины напряженности поля подчиняется закону Пуля:

, (4.17)

Для ряда диэлектриков более точным оказывается закон Френкеля:

, (4.18)

где – электропроводность в слабых электрических полях; – коэффициенты нелинейности, характеризующие свойства диэлектрика; Е – напряженность электрического поля.



Рассказать друзьям