Разрушение естественных экосистем на огромных территориях суши. Разрушение природных экосистем

💖 Нравится? Поделись с друзьями ссылкой

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

Каспийское море - это внутренний замкнутый водоем. Как и многие другие водные объекты, он подвержен значительной антропогенной нагрузке, на его экологическое состояние влияют многие факторы, как природные, так и деятельность человека. В силу этого, Каспийское море, имеет ряд экологических проблем, многие из которых являются распространенными для морей данного типа.

Каспийское море - уникальный экологический природный объект со своей экосистемой. Его примерная площадь 372 тысячи км 2 , объем около 78 000 км3, средняя глубина 208 метров, максимальная 1025 метров, соленость 12%. Этот трансграничный объект окружает несколько государств: Россия, Казахстан, Туркменистан, Иран, Азербайджан. Сохранность экосистемы Каспия, вопрос, который должен быть актуальным для всех этих стран. Нельзя допустить, что бы Каспий постигла проблема Аральского моря, которую смело можно называть катастрофой. Природа знает много примеров человеческого равнодушия, недостаточной оценки ситуации, неправильных мер воздействия, в результате которых были потеряны уникальные природные системы, полностью истреблены редкие виды животных и растений.

Выводом может служить тот факт, что любое необдуманное вмешательство в природные системы может привести к полностью противоположному результату. Примером служит разрушение экологической целостности экосистемы залива Кара-Богаз-Гол, вследствие чего возник ряд непредвиденных экологических проблем: опустынивание, солевые бури, потеря природного производства мирабилита, неблагоприятная санитарно-гигиеническая и экологическая обстановка. Экологическая политика Прикаспийских государств должна работать, как единый аппарат, который позволит сохранить Каспийское море и его уникальную природную экосистему.

Последствия экологических проблем для общества могут быть условно разделены на две категории - прямые и косвенные. Прямые последствия выражаются, например, в потере биологических ресурсов (промысловых видов и их кормовых объектов) и могут быть представлены в денежном выражении. Так, могут быть подсчитаны потери стран прикаспийского региона от неуклонного сокращения запасов осетровых, выраженные в сокращении продаж. Сюда также должны быть отнесены затраты по компенсации нанесенного ущерба (например, на строительство рыбоводных мощностей).

Косвенные последствия являются выражением потери экосистемами способности к самоочищению, утрате их равновесия и постепенном переходе в новое состояние. Для общества это проявляется в утрате эстетической ценности ландшафтов, создании менее комфортных условий существования населения и т.д. Кроме того, дальнейшая цепочка потерь приводит, как правило, опять к прямым экономическим потерям (туристический сектор и пр.).

За журналистскими рассуждениями о том, что Каспий попал в «сферу интересов» той или иной страны обычно теряется тот факт, что эти страны, в свою очередь, попадают в сферу влияния Каспия. Например, на фоне 10-50 млрд. долларов ожидаемых западных инвестиций в каспийскую нефть, экономические последствия массовой гибели каспийской кильки выражаются суммой «всего» в 2 млн. долларов. Однако реально этот ущерб выражается цифрой в 200 тыс. тонн дешевой белковой пищи. Неустойчивость, социальные риски, порождаемые дефицитом доступных продуктов в прикаспийском регионе, способны создать реальную угрозу для западных нефтяных рынков, а при неблагоприятном стечении обстоятельств - даже спровоцировать широкомасштабный топливный кризис.

Значительная часть ущерба, наносимого природе человеческой деятельностью, остается за рамками экономических расчетов. Именно отсутствие методов экономической оценки биоразнообразия и экологических услуг приводит к тому, что планирующие органы прикаспийских стран отдают предпочтение развитию добывающих отраслей и «аграрной индустрии» в ущерб устойчивому использованию биоресурсов, туризму и рекреации.

Все описанные ниже проблемы настолько тесно связаны между собой, что порой просто невозможно вычленить их в чистом виде. Фактически, речь идет об одной проблеме, которую можно обозначить как «разрушение естественных экосистем Каспия».

Теперь после краткого рассказа о Каспийского море можно рассмотреть основные экологические катастрофы этого водного бассейна.

1. Загрязнение моря

Главным загрязнителем моря, безусловно, является нефть. Нефтяные загрязнения подавляют развитие фитобентоса и фитопланктона Каспия, представленных сине-зелеными и диатомовыми водорослями, снижают выработку кислорода, накапливаются в донных отложениях. Увеличение загрязнения отрицательно сказывается и на тепло-, газо-, влагообмене между водной поверхностью и атмосферой. Из-за распространения на значительных площадях нефтяной пленки скорость испарения снижается в несколько раз.

Наиболее наглядно влияние нефтяного загрязнения на водоплавающих птицах. В контакте с нефтью перья утрачивают водоотталкивающие и теплоизолирующие свойства, что быстро приводит птиц к гибели. Массовая гибель птиц неоднократно отмечалась в районе Апшерона. Так, по сообщениям азербайджанской прессы, в 1998 г. погибло порядка 30 тыс. птиц на заповедном о-ве Гель (недалеко от пос. Алят). Близость заказников и добывающих скважин представляет постоянную угрозу для рамсарских водно-болотных угодий как на западном, так и на восточном берегу Каспия.

Воздействие нефтяных разливов на других водных животных также значительно, хотя и не так очевидно. В частности, начало добычи на шельфе совпадает с сокращением численности морского судака и утратой его ресурсного значения (участки нереста этого вида совпадают с участками нефтедобычи). Еще более опасно, когда в результате загрязнения выпадает не один вид, а целые местообитания.

В качестве примеров можно привести бухту Соймонова в Туркменистане, значительные участки западного побережья Южного Каспия. К сожалению, в Южном Каспии места нагула молоди рыб в значительной мере совпадают с нефтегазоносными площадями, а Маровские угодья находятся в непосредственной близости от них.

В Северном Каспии загрязнение от разработок нефти до последних лет было незначительным; этому способствовала слабая степень опоискованности и специальный заповедный режим этой части моря.

Ситуация поменялась с началом работ по освоению месторождения Тенгиз, а затем с обнаружением второго гиганта - Кашаган. Были внесены изменения в заповедный статус Северного Каспия, допускающие разведку и добычу нефти (постановление СМ РК за № 936 от 23 сентября 1993 г. и постановление Правительства РФ за № 317 от 14 марта 1998 г.). Однако именно здесь риск загрязнения максимален из-за мелководья, высоких пластовых давлений и т.д. Напомним, что только одна авария 1985 г. на тенгизской скважине 37 привела к выбросу 3 млн. т. нефти и гибели около 200 тыс. птиц.

Наметившееся совершенно явное сокращение инвестиционной активности в Южном Каспии дает повод для осторожного оптимизма в этой части моря. Уже сейчас видно, что массированное увеличение нефтедобычи маловероятно как в туркменском, так и в азербайджанском секторе. Мало кто вспоминает прогнозы 1998 г., по которым только Азербайджан к 2002 г. должен был добывать 45 млн. т нефти в год (в реальности - примерно 15). По сути дела, имеющейся здесь добычи едва хватает для обеспечения 100% загрузки имеющихся нефтеперерабатывающих заводов. Тем не менее, уже разведанные месторождения неизбежно будут осваиваться и дальше, что приведет к возрастанию риска аварий и крупных разливов на море. Более опасна разработка месторождений Северного Каспия, где годовая добыча в ближайшие годы достигнет как минимум 50 млн. т при прогнозных ресурсах в 5-7 млрд. т. Последние годы Северный Каспий первенствует в списке аварийных ситуаций.

История нефтяного освоения Каспия одновременно является историей его загрязнения, и каждый из трех «нефтяных бумов» внес свою лепту. Технология добычи усовершенствовалась, но положительный эффект в виде снижения удельного загрязнения сводился на нет увеличением количества добываемой нефти. По-видимому, уровни загрязнения в нефтедобывающих районах (Бакинская бухта и др.) были примерно одинаковыми в первый (до 1917 г.), второй (40-50-е гг. XX века) и третий (70-е гг.) пики добычи нефти.

Если уместно называть события последних лет «четвертым нефтяным бумом», то следует ожидать, как минимум, такого же масштаба загрязнений. Пока не ощущается ожидаемого снижения выбросов в связи с внедрением западными транснациональными корпорациями современных технологий. Так, в России с 1991 по 1998 гг. выбросы вредных веществ в атмосферу, приходящиеся на одну тонну добываемой нефти, составили 5,0 кг. Выбросы СП «Тенгизшевройл» в 1993-2000 гг. составили 7,28 кг на одну тонну добытой нефти. В прессе и официальных источниках описаны многочисленные случаи нарушения компаниями природоохранных требований, аварийные ситуации различной тяжести. Практически все компании не соблюдают действующий запрет на сброс в море буровых растворов. На космоснимках отчетливо просматривается гигантское нефтяное пятно в Южном Каспии.

Даже при самом благоприятном стечении обстоятельств, без крупных аварий и с учетом снижения выбросов до международного уровня, ожидаемое загрязнение моря превысит все, с чем мы сталкивались ранее. Согласно общепринятым расчетам, на каждый миллион тонн добытой в мире нефти приходится в среднем 131,4 т потерь. Исходя из ожидаемой добычи в 70-100 млн. т, в целом по Каспию будем иметь не менее 13 тыс. т в год, причем большая часть придется на Северный Каспий. По оценкам Росгидромета среднегодовое содержание нефтяных углеводородов в северокаспийской воде к 2020 г. поднимется вдвое-втрое и достигнет 200 мкг/л (4 ПДК) без учета аварийных разливов.

Только за время разбуривания месторождения «Нефтяные Камни» с 1941 по 1958 годы в 37 скважинах имело место искусственное грифонообразование (неконтролируемый выход нефти на поверхность моря). При этом грифоны эти действовали от нескольких дней до двух лет, а количество выбрасываемой нефти колебалось от 100 до 500 тонн в сутки.

В Туркменистане заметное техногенное загрязнение прибрежных мелководий в Красноводском заливе, бухте Аладжа наблюдалось в предвоенные и военные годы (Великая Отечественная война 1941-1945 гг.), после эвакуации сюда Туапсинского нефтеперерабатывающего завода. Это сопровождалось массовой гибелью водоплавающих птиц. На песчано-ракушечниковых косах и островах Туркменбашинского залива до сих пор периодически после смыва штормовыми волнами участков берега обнажаются «асфальтовые тропинки» протяженностью в сотни метров, образовавшиеся от впитавшейся в песок разлитой нефти. После середины 70-х годов на протяжении почти 250 км приморской части Западного Туркменистана стала создаваться мощная нефте- и газодобывающая промышленность. Уже в 1979 году началась эксплуатация нефтяных месторождений Дагаджик и Алигул на полуострове Челекен, Барса-Гельмес и Комсомольский.

Значительное загрязнение в туркменистанской части Каспия имело место в период активного освоения месторождений банок ЛАМ и Жданова: 6 открытых фонтанов с возгораниями и разливом нефти, 2 открытых фонтана с выбросом газа и воды, а также множество т.н. «нештатных ситуаций».

Даже в 1982-1987 г.г., т.е. в конечный период «застойного времени», когда действовали многочисленные законодательные акты: постановления, указы, инструкции, циркуляры, решения местных органов власти, существовала разветвленная сеть местных инспекций, лаборатории Госгидромета, Комитета по охране природы, Минрыбпрома, Минздрава и т.д., гидрохимическая обстановка во всех нефтедобывающих районах оставалась крайне неблагополучной.

В перестроечный период, когда последовал повсеместный спад производства, состояние с нефтяным загрязнением стало улучшаться. Так, в 1997-1998 гг. содержание нефтепродуктов в водах юго-восточного побережья Каспия снизилось в несколько раз, хотя все же превышало ПДК в 1,5 - 2,0 раза. Это было вызвано не только отсутствием бурения и общим снижением активности в акватории, но и предпринимаемыми мерами по сокращению сбросов в ходе реконструкции Туркменбашинского НПЗ. Снижение уровня загрязнений немедленно сказалось на состоянии биоты. Заросли харовых водорослей в последние годы покрыли практически весь Туркменбашинский залив, что служит показателем чистоты воды. Креветка появилась даже в максимально загрязненной бухте Соймонова. Кроме собственно нефти, существенным фактором риска для биоты (это исторически сложившаяся совокупность видов живых организмов, объединенных общей областью распространения в настоящее время или в прошедшие геологические эпохи. В состав биоты входят как представители клеточных организмов (растения, животные, грибы, бактерии и пр.), так и бесклеточные организмы (вирусы).

Биота является важной составной частью экосистемы и биосферы. Биота активно участвует в биогеохимических процессах. Изучение биоты - предмет многих наук, в том числе биологии, экологии, гидробиологии, палеонтологии, биохимии и др.) являются попутные воды. Как правило, сепарация (разделение воды и нефти) происходит на суше, после чего вода сливается в так называемые «пруды-испарители», в качестве которых используются естественные понижения рельефа (такыры и солончаки, реже межбарханные понижения). Поскольку попутные воды имеют высокую минерализацию (100 и более г/л), содержат остатки нефти, СПАВа и тяжелые металлы, то вместо испарения происходит разлив по поверхности, медленное просачивание в грунт, а далее по направлению движения грунтовых вод - к морю.

На этом фоне влияние попутных твердых отходов сравнительно невелико. К этой категории можно отнести остатки нефтедобывающего оборудования и конструкций, буровые шламы и т.п. В ряде случаев они содержат опасные материалы, например, трансформаторные масла, тяжелые и радиоактивные металлы и т.п. Наибольшую известность приобрели скопления серы, получаемые при очистке тенгизской нефти (6.9 весовых процентов; накоплено порядка 5 млн. т).

Основной объем загрязнений (90% от общего) поступает в Каспийское море с речным стоком. Это соотношение прослеживается почти по всем показателям (нефтеуглеводороды, фенолы, СПАВ, органические вещества, металлы и др.). В последние годы наблюдалось некоторое снижение загрязнений впадающих рек, за исключением Терека (400 и более ПДК по нефтеуглеводородам), куда попадает нефть и отходы с разрушенной нефтяной инфраструктуры Чеченской Республики.

Следует отметить, что доля речных загрязнений имеет тенденцию к сокращению, в меньшей степени за счет сокращения производства в долинах рек, в большей степени - за счет наращивания офшорной нефтедобычи. Ожидается, что в перспективе 2010-2020 гг. соотношение загрязнений река-море достигнет 50:50.

Вывод. Анализ ситуации с загрязнениями показывает, что на них сравнительно мало сказывается развитость природоохранного законодательства, внедрение современных технологий, наличие противоаварийного оборудования, усовершенствование технологий, наличие или отсутствие природоохранных органов и т.п. Единственным показателем, с которым коррелирует уровень загрязнения Каспия, является объем промышленного производства в его бассейне, в первую очередь - добыча углеводородов.

2. Болезни

Миопатия, или расслоение мышечной ткани у осетровых.

В 1987-1989 гг. у половозрелых осетров наблюдалось массовое явление миопатии, заключающееся в расслоении больших участков мышечных волокон, вплоть до их полного лизиса. Заболевание, получившее сложное научное название - «кумулятивный политоксикоз с многосистемным поражением», носило кратковременный и массовый характер (по оценкам, до 90% рыб в «речной» период их жизни; хотя природа этого заболевания не выяснена, предполагается связь с загрязнением водной среды (включая залповые сбросы ртути на Волге, нефтяное загрязнение и др.). Само название «кумулятивный политоксикоз...», на наш взгляд, является паллиативом, предназначенным скрыть истинные причины проблемы, как и указания на «хроническое загрязнение моря». Во всяком случае, по наблюдениям в Туркменистане, по информации иранских и азербайджанских коллег, миопатия практически не проявлялась у южно-каспийской популяции осетров. В целом по Южному Каспию признаки миопатии фиксировались редко, включая «хронически загрязненное» западное побережье. Вновь изобретенное название болезни пользуется успехом у исследователей Каспия: оно применялось позже ко всем случаям массовой гибели животных (тюленя весной 2000 г., кильки - весной и летом 2001г.).

Ряд специалистов приводят убедительные сведения о корреляции доли червя нереиса в питании с интенсивностью заболевания у различных видов осетровых. При этом подчеркивается, что нереис накапливает токсические вещества. Так, севрюга, потребляющая больше всего нереиса, в наибольшей степени подвержена миопатии, а в наименьшей степени этому подвержена белуга, которая питается, в основном, рыбой. Таким образом, есть все основания предполагать, что проблема миопатии прямо связана с проблемой загрязнения речного стока и косвенно - с проблемой чужеродных видов.

Например:

1. Гибель кильки весной и летом 2001 г.

Количество кильки, погибшей в течение весны-лета 2001 г., оценивается в 250 тыс. т, или 40%. С учетом данных о завышении оценок ихтиомассы килек в предыдущие годы, трудно верить в объективность этих цифр. Очевидно, что на Каспии погибло не 40%, а почти вся килька (не менее 80% популяции). Сейчас очевидно, что причиной массовой гибели кильки было не заболевание, а банальный недостаток питания. Тем не менее в официальных заключениях фигурирует «пониженный иммунитет в результате «кумулятивного политоксикоза».

2. Чума плотоядных у каспийского тюленя.

Как сообщали средства массовой информации, с апреля 2000 г. на Северном Каспии наблюдалась массовая гибель тюленей. Характерные признаки погибших и ослабленных животных - красные глаза, забитый нос. Первой гипотезой о причинах гибели было отравление, что отчасти подтвердилось нахождением повышенных концентраций тяжелых металлов и стойких органических загрязнителей в тканях погибших животных. Однако эти содержания не были критическими, в связи с чем была выдвинута гипотеза «кумулятивного политоксикоза». Проведенные «по горячим следам» микробиологические анализы давали неясную и неоднозначную картину.

Чумы плотоядных (собачьей чумки).Лишь спустя несколько месяцев удалось провести вирусологический анализ и определить непосредственную причину гибели - морбиллевирус

Согласно официальному заключению КаспНИРХа толчком к развитию заболевании могли послужить хронический «кумулятивный политоксикоз» и крайне неблагоприятные зимние условия. Чрезвычайно мягкая зима со среднемесячной температурой в феврале, на 7-9 градусов превышающей норму, отразилась на льдообразовании. Слабый ледовый покров просуществовал ограниченное время только в восточном секторе Северного Каспия. Линька животных происходила не на ледовых залежках, а в условиях большей скученности нa шалыгах восточного мелководья, периодическое затопление которых под влиянием нагонов усугубляло состояние линяющих тюленей.

3. Гибель тюленей

Схожая эпизоотия (хотя и в меньших масштабах) с выбросом на берег 6000 тюленей имела место в 1997 г. на Апшероне. Тогда одной из вероятных причин гибели тюленя также называлась чума плотоядных. Особенностью трагедии 2000 г. было ее проявление по всему морю (в частности, гибель тюленей на туркменском побережье началась за 2-3 недели до событий в Северном Каспии). Целесообразно рассматривать высокую степень истощения значительной части погибших животных как самостоятельный факт, отдельно от поставленного диагноза.

Большая часть популяции тюленя нагуливает жир в теплое время, а в холодный период мигрирует к северу, где на льду происходит размножение и линька. В этот период тюлень идет в воду крайне неохотно. По сезонам наблюдается резкая изменчивость пищевой активности. Так, в период размножения и линьки более половины желудков исследованных животных оказываются пустыми, что объясняется не только физиологическим состоянием организма, но и бедностью подледной кормовой базы (основные объекты - бычки и крабики).

Во время нагула компенсируется до 50% общего веса тела, потерянного за зиму. Годовая потребность популяции тюленя в пище - 350-380 тыс. т, из которых 89,4% потребляется в летний, нагульный период (май-октябрь). Основным кормом летом служит килька (80% рациона).

Исходя из этих цифр, тюленем съедалось 280-300 тыс. т кильки в год. Судя по снижению уловов кильки, недостаток питания в 1999 г. можно оценить величиной примерно в 100 тыс. т., или 35%. Едва ли это количество может быть компенсировано за счет других кормовых объектов.

Можно считать весьма вероятным, что эпизоотия среди тюленей весной 2000 г. была спровоцирована недостатком питания (кильки), что, в свою очередь, было следствием перевылова и, возможно, вселения гребневика мнемиопсиса. В связи с продолжающимся сокращением запасов кильки следует ожидать повторения массовой гибели тюленя в ближайшие годы.

При этом в первую очередь популяция будет терять весь приплод (не нагулявшие жир животные либо не вступят в размножение, либо сразу же потеряют детенышей). Возможно, будет гибнуть и значительная часть способных к размножению самок (беременность и лактация - истощение организма и т.д.). Структура популяции изменится коренным образом.

Следует с осторожностью относиться к обилию «аналитических данных» во всех вышеперечисленных случаях. Почти полностью отсутствовали какие-либо данные о половом и возрастном составе погибших животных, методике оценки общего количества, практически отсутствовали или не были обработаны данные проб, взятых с этих животных. Вместо этого приводятся химические анализы по большому спектру компонентов (включая тяжелые металлы и органические вещества), обычно без сведений о методах отбора проб, аналитических работ, стандартах и т.д. Как следствие, «заключения» пестрят многочисленными несуразностями. Например, в заключении Всероссийского научно-исследовательского института контроля, стандартизации и сертификации ветеринарных препаратов (растиражированном «Гринписом» во множестве СМИ) присутствует «372 мг/кг полихлорбифенилов». Если заменить миллиграммы на микрограммы, то это довольно высокое содержание, характерное, например, для женского грудного молока у людей, питающихся рыбной пищей. Кроме того, совершенно не была принята во внимание доступная информация об эпизоотиях морбиллевируса у родственных видов нерп (Байкал, Белое море и т.д.); состояние популяций кильки как основного объекта питания также не было проанализировано.

3. Проникновение чужеродных организмов

Угроза проникновения чужеродных видов до недавнего прошлого не считалась серьезной. Наоборот, Каспийское море использовалось в качестве полигона для вселения новых видов, предназначенных для увеличения рыбопродуктивности бассейна. Надо заметить, что эти работы в основном велись на основе научных прогнозов; в ряде случаев производилось одновременное вселение рыбы и кормового объекта (например, кефаль и червь нереис). Обоснования вселения того или иного вида были достаточно примитивными и не учитывали отдаленных последствий (например, появление пищевых тупиков, конкуренция за пищу с более ценными аборигенными видами, накопление токсических веществ и т.п.). Уловы рыбы с каждым годом уменьшались, в структуре уловов ценные виды (сельди, судак, сазан) сменялись менее ценными (мелкий частик, килька). Из всех вселенцев только кефали дали небольшую прибавку (порядка 700 т, в лучшие годы - до 2000 т) рыбной продукции, что никак не может компенсировать нанесенный вселением ущерб.

События приняли драматический характер, когда на Каспии началось массовое размножение гребневика мнемиопсиса (Mnemiopsis leidyi). По сведениям КаспНИРХа официально мнемиопсис на Каспии был впервые зафиксирован осенью 1999 г. Однако первые непроверенные данные относятся уже к середине 80-х гг., в середине 90-х появились первые предупреждения о возможности его появления и потенциальном ущербе, основанные на черноморско-азовском опыте.

Судя по отрывочным сведениям, численность гребневика в том или ином районе подвержена резким изменениям. Так, туркменские специалисты наблюдали большие скопления мнемиопсиса в районе Авазы в июне 2000 г., в августе того же года он в этом районе зафиксирован не был, а в августе 2001 г. концентрация мнемиопсиса составляла от 62 до 550 орг/м3.

Парадоксально, что официальная наука в лице КаспНИРХа до самого последнего момента отрицала влияние мнемиопсиса на рыбные запасы. В начале 2001 г. в качестве причины 3-4-кратного падения уловов кильки выдвигался тезис об «уходе косяков на другие глубины», и только весной того же года, после массовой гибели кильки было признано, что мнемиопсис сыграл роль в этом явлении.

Гребневик впервые появился в Азовском море лет десять назад, и в течение 1985-1990 гг. буквально опустошил Азовское и Черное моря. Его, по всей вероятности, завезли вместе с балластными водами на судах от берегов Северной Америки; дальнейшее проникновение в Каспий не составило большого труда. Питается в основном зоопланктоном, потребляя ежесуточно пищи примерно 40% от собственного веса, уничтожая таким образом пищевую базу каспийских рыб. Быстрое размножение и отсутствие естественных врагов ставят его вне конкуренции с другими потребителями планктона. Поедая также планктонные формы бентосных организмов, гребневик представляет угрозу и для наиболее ценных рыб-бентофагов (осетровые). Воздействие на хозяйственно ценные виды рыб проявляется не только косвенно, через уменьшение кормовой базы, но и в прямом их уничтожении. Под основным прессом оказываются кильки, солоноватоводные сельдевые и кефали, чья икра и личинки развиваются в толще воды. Икра морского судака, атерины и бычков на грунте и растениях, возможно, избежит прямого выедания хищником, но при переходе к личиночному развитию они также станут уязвимы. К факторам, ограничивающим распространение гребневика на Каспии, относятся соленость (ниже 2 г/л) и температура воды (ниже +40С).

Если ситуация на Каспии будет развиваться так же, как в Азовском и Черном морях, то полная потеря рыбохозяйственного значения моря произойдет между 2012-2015 гг.; общий ущерб составит около 6 млрд. долларов в год. Есть основания считать, что в силу большой дифференцированности условий Каспия, значительных изменений солености, температуры вод и содержания питательных элементов по сезонам и акватории, воздействие мнемиопсиса будет не столь опустошительным, как в Черном море.

Спасением экономического значения моря возможно станет срочное вселение его естественного врага, хотя эта мера не в состоянии восстановить разрушенные экосистемы. Пока рассматривается только один претендент на эту роль - гребневик берое. Между тем имеются большие сомнения относительно эффективности берое в условиях Каспия, т.к. он более чувствителен к температуре и солености воды, чем мнемиопсис.

4. Перелов и браконьерство

Среди специалистов рыбохозяйственной отрасли широко распространено мнение, что в результате экономических неурядиц в прикаспийских государствах в 90-е годы запасы практически всех видов экономически ценных рыб (кроме осетровых) недоиспользовались. В то же время анализ возрастной структуры вылавливаемой рыбы показывает, что даже в это время имел место существенный перелов (по крайней мере, анчоусовидной кильки). Так, в уловах кильки 1974 г. более 70% составляли рыбы возрастом 4-8 лет. В 1997 г. доля этой возрастной группы снизилась до 2%, а основную массу составляли рыбы возрастом 2-3 года. Квоты на вылов продолжали расти вплоть до конца 2001 г. Общий допустимый улов (ОДУ) на 1997 г. был определен в 210-230 тыс. т, освоено - 178,2 тыс. т, разница была отнесена на счет «экономических трудностей». В 2000 г. ОДУ был определен в 272 тыс. т, освоено - 144,2 тыс. т. В последние 2 месяца 2000 г. уловы кильки упали в 4-5 раз, однако даже это не повлекло переоценки численности рыбы, и в 2001 г. ОДУ был повышен до 300 тыс. т. И даже после массовой гибели кильки КаспНИРХом прогноз улова на 2002 г. был снижен незначительно (в частности, российская квота была снижена с 150 до 107 тыс. т). Этот прогноз абсолютно нереалистичен и отражает только стремление продолжать эксплуатацию ресурса даже в явно катастрофической ситуации.

Это заставляет с осторожностью относиться к научным обоснованиям квот, выданным КаспНИРХом за прошедшие годы по всем видам рыб. Это говорит о необходимости передачи определения лимитов эксплуатации биоресурсов в руки природоохранных организаций.

В наибольшей степени просчеты отраслевой науки сказались на состоянии осетровых. Кризис был очевиден еще в 80-е гг. С 1983 по 1992 г. уловы каспийских осетровых снизились в 2,6 раза (с 23,5 до 8,9 тыс. т), а за следующие восемь лет - еще в 10 раз (до 0,9 тыс. т в 1999 г.).

Для популяций этой группы рыб налицо большое количество угнетающих факторов, среди которых наиболее существенными считаются три: изъятие природных нерестилищ, миопатия и браконьерство. Беспристрастный анализ показывает, что ни один из этих факторов не был до последнего времени критическим.

Последний фактор сокращения осетровых популяций требует особенно тщательного анализа. Оценки браконьерского вылова стремительно выросли на наших глазах: от 30-50% от официального вылова в 1997 г. до 4-5 крат (1998 г.) и 10-11-14-15 раз в течение 2000-2002 гг. В 2001 г. объем незаконной добычи КаспНИРХом был оценен в 12-14 тыс. т осетровых и 1,2 тыс. т икры; эти же цифры фигурируют в оценках СИТЕС, в заявлениях Госкомрыболовства РФ. Учитывая высокую цену на черную икру (от 800 до 5000 долларов за кг в странах Запада), через СМИ широко распространялись слухи об «икорной мафии», контролирующей якобы не только рыболовство, но и правоохранительные органы в прикаспийских регионах. Действительно, если объемы теневых операций составляют сотни миллионов - несколько миллиардов долларов, эти цифры сопоставимы с бюджетом таких стран, как Казахстан, Туркменистан и Азербайджан.

Трудно представить, что финансовые ведомства и силовые структуры этих стран, а также Российской Федерации не замечают таких потоков средств и товаров. Между тем статистика выявляемых правонарушений выглядит на несколько порядков скромнее. Например, по РФ ежегодно изымается порядка 300 т рыбы и 12 т икры. За все время после распада СССР были зафиксированы лишь единичные попытки незаконного вывоза черной икры за рубеж.

Кроме того, едва ли возможно незаметно переработать 12-14 тыс. т осетровых и 1,2 тыс. т икры. Для переработки таких же объемов в СССР в 80-е годы существовала целая индустрия, армия хозяйственников была задействована на поставках соли, посуды, упаковочных материалов и т.п.

Вопрос о морском лове осетров. Существует предубеждение, что именно запрет морского лова осетров в 1962 г. позволил восстановить популяции всех видов. На самом деле здесь смешивается два принципиально разных запрета. Реальную роль в сохранении осетровых сыграл запрет сейнерного и дрифтерного лова сельдей и частиковых, при котором происходило массовое уничтожение молоди осетров. Собственно запрет морского промысла едва ли сыграл значительную роль. С биологической точки зрения этот запрет никакого смысла не имеет, зато имеет большой коммерческий смысл. Вылов идущей на нерест рыбы технически прост и позволяет получать больше икры, чем где бы то ни было (10%). Запрет морского лова позволяет сосредоточить производство в устьях Волги и Урала и облегчает контроль над ним, включая манипулирование квотами.

Анализируя хронику борьбы с браконьерством на Каспии, можно выделить две важных даты. В январе 1993 г. было принято решение подключить к этой проблеме погранвойска, ОМОН и другие силовые структуры, что, однако, незначительно сказалось на объемах изымаемой рыбы. В 1994 г., когда действия этих структур были скоординированы на работу в дельте Волги (операция «Путина»), количество изымаемой рыбы возросло почти втрое.

Морской лов сложен, никогда не давал более 20% улова осетровых. В частности, у берегов Дагестана, который сейчас считается едва ли не главным поставщиком браконьерской продукции, в период разрешенного морского лова добывалось не более 10%. Вылов осетровых в устьях рек во много раз эффективнее, особенно при низкой популяции. К тому же в реках выбивается «элита» осетрового стада, тогда как в морях скапливается рыба с нарушенным хомингом.

Примечательно, что Иран, ведущий в основном морской промысел осетров, за последние годы не только не снизил, но и постепенно увеличивает вылов, став основным поставщиком икры на мировой рынок, несмотря на то, что южно-каспийское стадо должно быть истреблено браконьерами Туркменистана и Азербайджана. Для сохранения молоди осетровых Иран пошел даже на сокращение традиционного для этой страны лова кутума.

Очевидно, что морской лов не является определяющим фактором сокращения популяций осетровых. Основной ущерб рыбе наносится там, где сосредоточен ее основной вылов - в устьях Волги и Урала.

5. Зарегулирование речного стока. Изменение естественных биогеохимических циклов

Массированное гидростроительство на Волге (а затем на Куре и других реках) начиная с 30-х гг. XX века лишило осетровых Каспия большей части их естественных нерестилищ (для белуги - 100%). Для компенсации этого ущерба строились и строятся рыбоводные заводы. Количество выпускаемых (иногда только на бумаге) мальков служит одним из главных оснований для определения квот вылова ценной рыбы. Между тем ущерб от потерь продукции моря распределяется на все прикаспийские страны, а выгоды от гидроэнергетики и ирригации - только странам, на территории которых произошло регулирование стока. Такое положение не стимулирует прикаспийские страны к восстановлению естественных нерестилищ, к сохранению других естественных местообитаний - мест нагула, зимовки осетровых и т.п.

Рыбопропускные сооружения на плотинах страдают множеством технических недостатков, система подсчета идущей на нерест рыбы также далека от совершенства. Однако при самых лучших системах, скатывающая по реке молодь, не будет возвращаться в море, а будет образовывать искусственные популяции в загрязненных и бедных кормами водохранилищах. Именно плотины, а не загрязнение вод наряду с переловом послужили главной причиной сокращения осетрового стада. Примечательно, что после разрушения Каргалинского гидроузла осетр был замечен на нересте в свехзагрязненном верхнем течении Терека. Между тем строительство плотин повлекло за собой еще большие проблемы. Северный Каспий некогда был богатейшей частью моря. Сюда Волга приносила минеральный фосфор (около 80% от общего поступления), давая основную часть первичной биологической (фотосинтетической) продукции. Как следствие, 70% запасов осетровых формировалось в этой части моря. Теперь большая часть фосфатов потребляется в волжских водохранилищах, а в море фосфор попадает уже в виде живой и отмершей органики. В результате этого биологический цикл коренным образом изменился: укорачивание трофических цепочек, преобладание деструкционной части цикла и т.д. Зоны максимальной биопродуктивности сейчас - в зонах апвеллинга (это процесс, при котором глубинные воды океана поднимаются к поверхности) вдоль Дагестанского побережья и на свалах глубин Южного Каспия. В эти районы сместились и основные места нагула ценной рыбы. Образовавшиеся «окна» в пищевых цепочках, разбалансированные экосистемы создают благоприятные условия для проникновения чужеродных видов (гребневик мнемиопсис и т.п.).

В Туркменистане деградация нерестилищ трансграничной реки Атрек обусловлена комплексом причин, включая снижение водности, зарегулирование стока на территории Исламской Республики Иран, заиливание русла. Нерест полупроходных рыб зависит от водности реки Атрек, что приводит к напряженному состоянию промысловых запасов атрекского стада каспийской воблы и сазана. Влияние зарегулирования Атрека на деградацию нерестилищ не обязательно выражается в недостатке объемов воды. Атрек - одна из самых мутных рек мира, поэтому в результате сезонного изъятия воды происходит быстрое заиливание русла. Урал остается единственной незарегулированной из крупных рек Каспийского бассейна. Однако состояние нерестилищ на этой реке также весьма неблагополучное. Главной проблемой на сегодняшний день является заиливание русла. Когда-то почвы в долине Урала были защищены лесами; позднее эти леса были вырублены, а пойма распахана почти до уреза воды. После того, как «в целях сохранения осетровых» на Урале было прекращено судоходство, прекратились работы по чистке фарватера, что сделало недоступными большую часть нерестилищ на этой реке.

6. Эвтрофикация

Эвтрофикация - это насыщение водоемов биогенными элементами, сопровождающиеся ростом биологической продуктивности водных бассейнов. Эвтрофикация может быть результатом как естественного старения водоема, так и антропогенных воздействий. Основные химические элементы, способствующие эвтрофикации - фосфор и азот. В некоторых случаях используется термин «гипертрофизация».

Высокий уровень загрязнения моря и впадающих в него рек уже давно вызывали опасения формирования бескислородных зон в Каспии, особенно для районов южнее Туркменского залива, хотя эта проблема не числилась в наиболее приоритетных. Однако последние надежные данные по этому вопросу относятся к началу 80-х гг. Между тем, существенное нарушение баланса синтеза и распада органического вещества в результате внедрения гребневика мнемиопсиса может привести к серьезным и даже катастрофическим изменениям. Поскольку мнемиопсис не несет угрозы фотосинтетической деятельности одноклеточных водорослей, но влияет на деструктивную часть цикла (зоопланктон - рыбы - бентос), отмирающее органическое вещество будет накапливаться, вызывая сероводородное заражение придонных слоев воды. Отравление оставшегося бентоса приведет к прогрессирующему разрастанию анаэробных участков. Можно уверенно прогнозировать формирование обширных бескислородных зон везде, где есть условия для длительной стратификации вод, особенно в местах смешения пресной и соленой воды, массовой продукции одноклеточных водорослей. Эти места совпадают с участками поступления фосфора - на свалах глубин Среднего и Южного Каспия (зоны апвеллинга) и на границе Северного и Среднего Каспия. Для Северного Каспия также отмечены участки с пониженным содержанием кислорода; проблема усугубляется наличием ледового покрова в зимние месяцы. Эта проблема еще более усугубит положение коммерчески ценных видов рыб (заморы; препятствия на путях миграции и др.).

Кроме того, трудно спрогнозировать, как в новых условиях будет эволюционировать таксономический состав фитопланктона. В ряде случаев при высоком поступлении питательных веществ не исключено формирование «красных приливов», примером чего могут служить процессы в бухте Соймонова (Туркменистан).

7. Опишите процесс, обеспечивающий постоянство газового состава воды

В воздухе всегда содержится водяной пар, как в газообразном, так и в жидком (вода) или твердом (лед) состоянии, в зависимости от температуры. Основным источником поступления пара в атмосферу является океан. Пар поступает в атмосферу также от растительного покрова Земли.

У поверхности моря воздух постоянно смешивается с водой: воздух поглощает влагу, которая уносится морскими ветрами, атмосферные газы проникают в воду и растворяются в ней. Морские ветры, доставляя все новые потоки воздуха к поверхности воды, облегчают проникновение атмосферного воздуха в воду океана.

Растворимость газов в воде зависит от трех факторов: температуры воды, парционального давления газов, входящих в состав атмосферного воздуха, и их химического состава. В холодной воде газы растворяются лучше, чем в теплой. С повышением температуры воды с поверхности моря выделяются растворенные газы в холодных областях, а в тропиках частично возвращают их в атмосферу. Конвективное перемешивание воды обеспечивает проникновение растворенных в воде газов по всей толще воды, вплоть до океанского дна.

Три газа, составляющих основную часть атмосферы, - азот, кислород и углекислый газ, в больших количествах присутствуют и в океанских водах.Главным источником насыщения океанских вод газами является атмосферный воздух.

8. Объясните понятие «обмен веществ и энергии»

Выделение энергии происходит в результате окисления сложных органических веществ, входящих в состав клеток, тканей и органов человека до образования более простых соединений. Расход этих питательных веществ организмом называется диссимиляцией. Образующиеся в процессе окисления простые вещества (вода, углекислый газ, аммиак, мочевина) выводятся из организма с мочой, калом, выдыхаемым воздухом, через кожу. Процесс диссимиляции находится в прямой зависимости от расхода энергии на физический труд и теплообмен.

Восстановление и создание сложных органических веществ клеток, тканей, органов человека происходит за счет простых веществ переваренной пищи. Процесс накопления этих питательных веществ и энергии в организме называется ассимиляцией. Процесс ассимиляции, следовательно, зависит от состава пищи, обеспечивающей организм всеми питательными веществами.

Процессы диссимиляции и ассимиляции протекают одновременно, в тесном взаимодействии и имеют общее название -- процесс обмена веществ. Он складывается из обмена белков, жиров, углеводов, минеральных веществ, витаминов и водного обмена.

Обмен веществ находится в прямой зависимости от расхода энергии (на труд, теплообмен и работу внутренних органов) и состава пищи.

Обмен веществ в организме человека регулируется центральной нервной системой непосредственно и через гормоны, вырабатываемые железами внутренней секреции. Так на белковый обмен влияет гормон щитовидной железы (тироксин), на углеводный -- гормон поджелудочной железы (инсулин), на жировой обмен -- гормоны щитовидной железы, гипофиза, надпочечников.

Суточный расход энергии человека. Для обеспечения человека пищей, соответствующей его энергетическим затратам и пластическим процессам, необходимо определить суточный расход энергии.

За единицу измерения энергии человека принято считать килокалорию. В течение суток человек тратит энергию на работу внутренних органов (сердца, пищеварительного аппарата, легких, печени, почек и т.д.), теплообмен и выполнение общественно полезной деятельности (работа, учеба, домашний труд, прогулки, отдых). Энергия, затрачиваемая на работу внутренних органов и теплообмен, называется основным обменом. При температуре воздуха 20° С, полном покое, натощак основной обмен составляет 1 ккал в 1ч на 1 кг массы тела человека. Следовательно, основной обмен зависит от массы тела, а также от пола и возраста человека.

9. Перечислите типы экологических пирамид

Экологическая пирамида - графические изображения соотношения между продуцентами и консументами всех уровней (травоядных, хищников; видов, питающихся другими хищниками) в экосистеме.

Схематически изображать эти соотношения предложил американский зоолог Чарльз Элтон в 1927 году.

При схематическом изображении каждый уровень показывают в виде прямоугольника, длина или площадь которого соответствует численным значениям звена пищевой цепи (пирамида Элтона), их массе или энергии. Расположенные в определенной последовательности прямоугольники создают различные по форме пирамиды.

Основанием пирамиды служит первый трофический уровень - уровень продуцентов, последующие этажи пирамиды образованы следующими уровнями пищевой цепи - консументами различных порядков. Высота всех блоков в пирамиде одинакова, а длина пропорциональна числу, биомассе или энергии на соответствующем уровне.

Экологические пирамиды различают в зависимости от показателей, на основании которых строится пирамида. При этом для всех пирамид установлено основное правило, согласно которому в любой экосистеме больше растений, чем животных, травоядных, чем плотоядных, насекомых, чем птиц.

На основе правила экологической пирамиды можно определить или рассчитать количественные соотношения разных видов растений и животных в естественных и искусственно создаваемых экологических системах. Например, 1 кг массы морского зверя (тюленя, дельфина) нужно 10 кг съеденной рыбы, а этим 10 кг нужно уже 100 кг их корма - водных беспозвоночных, которым в свою очередь для образования такой массы необходимо съедать 1000 кг водорослей и бактерий. В данном случае экологическая пирамида будет устойчива.

Однако, как известно, из каждого правила бывают исключения, которые будут рассмотрены в каждом типе экологических пирамид.

Типы экологических пирамид

1.Пирамида чисел.

Рис. 1 Упрощенная экологическая пирамида чисел

Пирамиды чисел - на каждом уровне откладывается численность отдельных организмов

Пирамида чисел отображает отчетливую закономерность, обнаруженную Элтоном: количество особей, составляющих последовательный ряд звеньев от продуцентов к консументам, неуклонно уменьшается (рис.1).

Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. В данном случае пирамида будет иметь вид треугольника с широким основанием суживающимся кверху.

Однако подобная форма пирамиды чисел характерна не для всех экосистем. Иногда они могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами - насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых), поэтому пирамиды чисел наименее информативны и наименее показательны, т.е. численность организмов одного трофического уровня в значительной степени зависит от их размеров.

2. Пирамиды биомасс

Рис. 2 Экологическая пирамида биомассы

Пирамиды биомасс - характеризует общую сухую или сырую массу организмов на данном трофическом уровне, например, в единицах массы на единицу площади - г/м2, кг/га, т/км2 или на объем - г/м3 (рис.2)

Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели консументов второго порядка и т.д.

В данном случае (если организмы не слишком различаются по размерам) пирамида также будет иметь вид треугольника с широким основанием суживающимся кверху. Однако и из этого правила имеются существенные исключения. Например, в морях биомасса растительноядного зоопланктона существенно (иногда в 2-3 раза) больше биомассы фитопланктона, представленного преимущественно одноклеточными водорослями. Это объясняется тем, что водоросли очень быстро выедаются зоопланктоном, но от полного выедания их предохраняет очень высокая скорость деления их клеток.

В целом для наземных биогеоценозов, где продуценты крупные и живут сравнительно долго, характерны относительно устойчивые пирамиды с широким основанием. В водных же экосистемах, где продуценты невелики по размеру и имеют короткие жизненные циклы, пирамида биомасс может быть обращенной, или перевернутой (острием направлена вниз). Так, в озерах и морях масса растений превышает массу потребителей только в период цветения (весной), а в остальное время года может создаться обратное положение.

Пирамиды чисел и биомасс отражают статику системы, т. е. характеризуют количество или биомассу организмов в определенный промежуток времени. Они не дают полной информации о трофической структуре экосистемы, хотя позволяют решать ряд практических задач, особенно связанных с сохранением устойчивости экосистем.

Пирамида чисел позволяет, например, рассчитывать допустимую величину улова рыбы или отстрела животных в охотничий период без последствий для нормального их воспроизведения.

3.Пирамиды энергии

Рис. 2 Экологическая пирамида энергии

Пирамиды энергии - показывает величину потока энергии или продуктивности на последовательных уровнях (рис.3).

В противоположность пирамидам чисел и биомассы, отражающим статику системы (количество организмов в данный момент), пирамида энергии отражая картину скоростей прохождения массы пищи (количества энергии) через каждый трофический уровень пищевой цепи, дает наиболее полное представление о функциональной организации сообществ.

На форму этой пирамиды не влияют изменения размеров и интенсивности метаболизма особей, и если учтены все источники энергии, то пирамида всегда будет иметь типичный вид с широким основанием и суживающейся верхушкой. При построении пирамиды энергии в ее основание часто добавляют прямоугольник, показывающий приток солнечной энергии.

В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергий (закон 10 процентов), согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10% поступившей на предыдущий уровень экологической пирамиды энергии. Остальная часть энергии теряется в виде теплового излучения, на движение и т.д. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90% всей энергии, которая расходуется на поддержание их жизнедеятельности.

Если заяц съел 10 кг растительной массы, то его собственная масса может увеличиться на 1 кг. Лисица или волк, поедая 1 кг зайчатины, увеличивают свою массу уже только на 100 г. У древесных растений эта доля много ниже из-за того, что древесина плохо усваивается организмами. Для трав и морских водорослей эта величина значительно больше, поскольку у них отсутствуют трудноусвояемые ткани. Однако общая закономерность процесса передачи энергии остается: через верхние трофические уровни ее проходит значительно меньше, чем через нижние.

Рассмотрим превращение энергии в экосистеме на примере простой пастбищной трофической цепи, в которой имеется всего три трофических уровня.

уровень - травянистые растения,

уровень - травоядные млекопитающие, например, зайцы

уровень - хищные млекопитающие, например, лисы

Питательные вещества создаются в процессе фотосинтеза растениями, которые из неорганических веществ (вода, углекислый газ, минеральные соли и т.д.) с использованием энергии солнечного света образуют органические вещества и кислород, а также АТФ. Часть электромагнитной энергии солнечного излучения при этом переходит в энергию химических связей синтезируемых органических веществ.

Все органическое вещество, создаваемое в процессе фотосинтеза называется валовой первичной продукцией (ВПП). Часть энергии валовой первичной продукции расходуется на дыхание, в результате чего образуется чистая первичная продукция (ЧПП), которая и является тем самым веществом, которое поступает на второй трофический уровень и используется зайцами.

...

Подобные документы

    Принципиальная разница в поведении энергии и вещества в экосистеме. Основные биоценотические связи и отношения. Сохранение стационарного состояния естественных природных замкнутых открытых систем, их устойчивость. Роль биогеохимических циклов в биосфере.

    реферат , добавлен 10.10.2015

    Рассмотрение соотношения пастбищных и детритных цепей. Построение пирамид численности, биомассы и энергии. Сравнение основных признаков водных и наземных экосистем. Типы биогеохимических круговоротов в природе. Понятие озонового слоя стратосферы.

    презентация , добавлен 19.10.2014

    Использование воды из естественных водоёмов в качестве охладителя. Последствия теплового загрязнения естественных водоёмов Украины. Технологические пути решения проблемы охлаждения на электростанциях Украины.

    реферат , добавлен 06.04.2003

    Экосистема как биоценоз, биотоп и система связей, осуществляющая обмен веществ и энергии между ними. Классификация и сравнительная характеристика типов наземных и водных природных экологических систем: схема потока энергии, общие признаки и различия.

    курсовая работа , добавлен 21.02.2013

    Биотический круговорот в природной системе. Группы организмов, и трансформация энергии в биогеоцинозе. Трофическая структура экосистемы. Типы пищевых цепей. Графическая модель экологических пирамид и способы ее построения. Пищевые связи водоема и леса.

    контрольная работа , добавлен 12.11.2009

    Влажность и адаптация к ней организмов. Типы взаимоотношений организмов в биоценозах. Передача энергии в экосистемах. Пищевая специализация и энергетический баланс консументов. Антропогенное воздействие на литосферу. Процессы водной и ветровой эрозии.

    реферат , добавлен 21.02.2012

    Урбанистическая система - неустойчивая природно-антропогенная система, состоящая из архитектурно-строительных объектов и резко нарушенных естественных экосистем. Технический прогресс и шумовое разрушение. Пылевое загрязнение воздуха. Проблема отходов.

    контрольная работа , добавлен 03.05.2011

    Типы экосистем - совокупности взаимодействующих организмов, условий среды в зависимости от величины качественного и количественного состава компонентов. Пирамиды биомассы биоценозов. Рекультивация нарушенных территорий. Понятие энергетических загрязнений.

    контрольная работа , добавлен 06.04.2016

    Виды экосистем, город как неполная экосистема. Его отличие естественных гетеротрофных аналогов. Взаимодействие города и природной среды. Модель возможных негативных экологических и социальных последствий урбанизации. Факторы, влияющие на здоровье горожан.

    реферат , добавлен 01.03.2015

    Понятие экологической ниши. Экологические группы: продуценты, консументы и редуценты. Биогеоценоз и экосистема и их структура. Трофические цепи, сети и уровни как пути передачи веществ и энергии. Биологическая продуктивность экосистем, правила пирамид.

Основные причины разрушения экосистем и истощения ресурсов следующие:

– В отличие от природы, где образование и потребление пищевых ресурсов происходят по безотходному, почти замкнутому циклу, при производстве продуктов и товаров человеком образуются отходы. Для удовлетворения всех своих нужд человеку в год требуется около 20 т природного сырья, 90-95% которого поступает в отходы. Когда-то природные системы перерабатывали отходы человеческой деятельности, как бы защищая себя от их вредного воздействия. В современных условиях возможности биосферы к самоочищению и саморегуляции почти исчерпаны.

– Емкость природной среды, т.е. максимальная численность популяции определенного вида, которую в течение длительного времени экосистема может выдержать и не деградировать, не позволяет переработать все отходы деятельности человека, накопление которых создает угрозу глобального загрязнения окружающей среды и деградации естественных экосистем.

– Запасы полезных ископаемых ограничены физико-химическими условиями и размерами нашей планеты, что приводит к их постепенному истощению.

– Результаты разрушительной деятельности людей часто имеют долговременные последствия, которые не прослеживаются одним поколением. Кроме того, воздействие на природу в одном регионе может сказываться в отдаленных от этого региона местах.

По мере роста города затраты на обеспечение его функций возрастают, а качество жизни снижается. Оптимальная емкость среды, очевидно, соответствует городам умеренных размеров, с населением около 100 тысяч человек.

Индустриально-городская система сильно зависит также от емкости среды на входе и выходе, т.е. размеров сельского окружения. Чем больше город, тем больше он нуждается в пригородных пространствах. Часто именно качество жизни, а не недостаток энергии и других удобств становится фактором, лимитирующим развитие города. Некоторые ученые полагают, что поддерживающая емкость Земли уже превышена.

Вопросы текущего контроля

1. Определение экосистемы.

2. Опишите состав экосистемы.

3. Абиотический компонент – это…

4. Биотический компонент – это…

5. Из каких функциональных групп состоят биотические компоненты?

6. Энергию чего используют фотоавтотрофы?

7. Какую энергию используют хемоавтотрофы?

8. Какой процесс осуществляют консументы, или гетеротрофные организмы?

9. Чем питаются фаготрофы и сапротрофы?

10. В чем заключается роль редуцентов в круговороте веществ?

11. Чем обеспечивается функционирование экосистемы?

12. Взаимодействие каких процессов является наиболее важной функцией любых экосистем?

13. Чем обеспечивается саморегуляция систем?

14. дайте определение следующим понятиям: Гомеостаз, Резистентная устойчивость, Упругая устойчивость, Фотосинтез, Метаболизм, Аэробное дыхание, Бескислородное дыхание.

15. Экологическая сукцессия – это…

16. Чем характеризуется автотрофная сукцессия?

17. Чем характеризуется гетеротрофная сукцессия?

18. Эволюция экосистем – это…

19. Биом – это…

20. Перечислите кратко основные причины разрушения экосистем и истощения ресурсов.


Лекция №4 .

1.Экологические факторы.

2.Абиотические факторы.

3.Биотические факторы.

4.Антропогенные факторы.

3. Разрушение экосистем

Естественные экологические факторы – все составные (элементы) естественной среды, которые влияют на существование и развитие организмов и на какие живые существа реагируют реакциями приспособления (за пределами способности приспособления наступает смерть). К естественным факторам относятся: геомагнитное поле Земли; космические излучения; природные лучевые нагрузки; стихийные явления.

Геомагнитное поле Земли – фактор окружающей среды, под воздействием которого протекала многовековая эволюция всего живого на нашей планете. Геомагнитное поле относится к естественным слабым по интенсивности электромагнитным полям. Если бы отсутствовало магнитное поле, условия жизни на Земле, вероятно, были бы другими. Магнитное поле является как бы тормозом, препятствующим проникновению в земную атмосферу солнечной плазмы, обладающей радиоактивными свойствами. Такое же захватывающее действие оказывает геомагнитное поле и на космические лучи (поток заряженных частиц со сверхвысокими скоростями), непрерывно выбрасываемыми Солнцем и образующими корпускулярный поток – солнечный ветер. Благодаря этому, биосфера защищена геомагнитным полем от радиоактивного излучения, посылаемого на Землю Солнцем и другими небесными телами.

Вспышки на Солнце порождают более мощные корпускулярные потоки, возмущающие магнитное поле Земли. В результате быстро и сильно меняются характеристики магнитного поля. Это явление называется магнитной бурей.

Геомагнитное поле – все проникающий и все охватывающий физический фактор, поэтому оно неизбежно оказывает влияние на биосферу. Оно воздействует на все живое, в том числе и на человека. Так, в периоды магнитных бурь увеличивается количество сердечно-сосудистых заболеваний, инфарктов, ухудшается состояние больных, страдающих гипертонией.

С изменением интенсивности геомагнитного поля связывают годовой прирост деревьев, урожай зерновых культур, увеличение психических заболеваний и дорожных катастроф.

К числу экологических уроков, которые имеют наиболее длинную историю и, пожалуй, принесли биосфере и человеку максимально ощутимый ущерб, следует отнести разрушение экосистем, их опустынивание. Под последним понимается разрушение экосистем до такой степени, что они теряют способность саморегулирования и самовосстановления. Растительность при этом, как правило, уничтожается, почвы теряют свое основное качество – плодородие.

Опустынивание стало сопровождать человека со времени его перехода к ведению примитивного хозяйства. Три основных процесса способствовали этому: эрозия почв, вынос химических элементов с урожаем, вторичное засоление почв при поливном земледелии.

В ряде случаев эти процессы накладывались на неблагоприятное изменение климата, его аридизацию (засушливость). При таких стечениях обстоятельств процессы опустынивания резко интенсифицировались. Интегральный результат различных видов опустынивания к настоящему времени выражается в потере 1,5 – 3 млрд. га плодородных земель за историю человечества.

В ряде случаев, особенно если разрушение земель не сопровождалось аридизацией климата, опустынивание могло идти по типу повторяющихся циклов: экосистема – ее разрушение (катоценоз) – первичная сукцессия. Последняя могла достигать завершающей стадии (климакса) или вновь прерываться опустыниванием.

Рассмотрим такие явления на примере экосистем, свойственных легким (песчаным и супесчаным) почвам. Они более ранимы, чем другие, и подвергаются разрушению и превращаются в пустынные ландшафты.

В этом плане крайне интересны результаты изучения песчаных пространств и ландшафтов известным песковедом профессором А.Г.Гаелем.

Исследования свидетельствуют, что обширные песчаные пространства, расположенные в долинах рек степной зоны, неоднократно подвергались разрушению с переработкой (эрозией) почв ветром и полным или частичным опустыниванием.

Такие явления разрушения и формирования экосистем могли повторяться не раз, что находило отражение в рельефе, ландшафтах и особенно в строении почвенного покрова. Профессор А.Г.Гаель для песков юга и юго-востока России и СНГ выделяет несколько фаз ветровой эрозии (дефляции) песчаных почв и свойственных им экосистем. Первая фаза дефляции песчаных пространств, по Гаелю, имела место после выхода их из-под воды. Она не была связана с деятельностью человека. Такие пески интенсивно перерабатывались ветром, так как не были еще скреплены растительностью. До настоящего времени немного сохранялось ландшафтов, сформировавшихся на таких отложениях. Для них характерны спокойные формы рельефа (пологобугристые, холмистые) с мощными почвами (или их останками) и богатой песчано-степной растительностью. По понижениям, где грунтовые воды залегают неглубоко от поверхности, распространены экосистемы, в которых доминируют древесные и кустарниковык вижды. Такую фазу дефляции песков, которая предшествовала появлению на них растительного покрова, А.Г.Гаель называет афитогенной (безрастительной, дорастительной).

Последующие фазы дефляций были связаны с разрушением экосистем. Наиболее часто причиной разрушений был перевыпас скота. Такие фазы дефляции названы пастушескими, или пасторальными.

В более поздние времена причинами дефляций часто выступало воздействие техники, вспашка целинных почв. Последние явления приобрели большие масштабы в 60-е годы ХХ века при осуществлении программы освоения целинных и залежных земель. Практически все распаханные легкие почвы (песчаные, супесчаные) – около 5 млн.га были превращены в подвижные субстраты с сопутствующими им пыльными бурями.

Потребовались большие усилия для того, чтобы остановить этот процесс лесоразведением, травосеянием, химическими покрытиями и т.п. Возвращение таких земель в интенсивное использование (пастбищный фонд) потребует очень длительного времени.

Опустынивание по описанному выше типу происходит и в настоящее время. Разрушаются ценнейшие черные земли Калмыкии. Географ А.А.Григорьев отмечает, что при норме выпаса на этих землях не более 750 тыс.голов овец, здесь постоянно выпасалось 1млн.650 тыс.голов. Кроме этого, здесь обитали свыше 200 тыс. сайгаков. Пастбища оказались перегруженными в2,5-3 раза. В результате из 3 млн. га пастбищ 650 тыс. га превращены в подвижные пески, а на остальных площадях крайне обеднен растительный покров и начались эрозийные процессы. В целом, по определению Григорьева, Калмыцкая степь превращается в бесплодную пустыню, что можно рассматривать как высшую степень опустынивания.

Катастрофические масштабы приобрело опустынивание на северной окраине Сахары, которая носит название Сахеля (переходная полоса между пустыней и саванной). Здесь опустынивание также обусловлено высокими нагрузками на экосистемы, усугубившимися длительными засухами 60-70 годов прошлого столетия. Есть сведения, что опустыниванию способствовала успешная борьба с мухой цеце. Это позволило резко увеличить поголовье скота, за чем последовал перевыпась, оскудение пастбищ и разрушение экосистем. Стали интенсивно пересыхать колодцы, приходить в движение пески. Скорость их наступления на прилежащие земли и селения достигает 10 км/год. Под угрозой погребения песками оказалась столица Мавритании – г.Нуакшот.

Конечный результат такого явления – массовая гибель скота, голод, высокая смертность населения. Опустынивание, таким образом, превратилось в крупную эколого-социальную катастрофу.

Большие масштабы опустынивание земель имеет и в других засушливых районах. Так, по данным космических съемок процессами опустынивания в той или иной степени затронуто около 53% территории Африки и 34% территории Азии. В странах СНГ опустыниванием охвачены обширные территории Казахстана и Средней Азии, особенно в Приаралье, включая районы прокладки Каракумского канала, долины рек Сырдарьи и Амударьи.

В целом в мире ежегодно около 20 млн. га земель превращаются в пустыню.


Заключение

Научно-техническая революция создала огромные возможности для покорения сил природы, а вместе с тем для ее загрязнения и разрушения. Промышленный процесс сопровождается поступлением в биосферу огромного количества загрязнений, которые могут нарушить природное равновесие и угрожать здоровью людей.

Реальные экологические опасности – опасности, которые уже произошли или существуют, а потенциальные экологические опасности – опасности, которые могут случиться.

Проблемы экологической опасности не безразличны для населения России. Повсеместно создаются общественные организации и объединения, деятельность которых направлена на выявление проблем экологической безопасности, охраны среды и здоровья людей; на распространение достоверной информации о состоянии природной среды и здоровья населения РФ; на проведение общественной экологической экспертизы и оценку экологического риска; защиту прав и интересов граждан, общественный контроль за соблюдением законодательства в области природопользования. От правительства требуется принятие решений для оптимального природопользования. Эти организации имеют свои печатные издания, газеты («Спасение», «Зеленый мир», «Беренгия» и др.), связи с международными организациями, фондами, которые работают в области защиты окружающей среды.

Однако основным и наиболее комплексным универсальным инструментом призвано быть государство, которое должно стать во главе гражданских и общественных организаций в деле защиты каждого индивидуума, всех социальных групп, всего общества в целом. Это его основные функции и предназначение (с которым оно часто не справляется).

Государство призвано быть средством и механизмом реализации заботы в обществе, которое его создает, о жизнеобеспечении и развитии. Оно обслуживает общество, выполняя организующую роль, вырабатывая и реализуя технологию выживания и развития, безопасного существования.

При разработке Концепции и обсуждении важнейших вопросов на Совете безопасности РФ определено, что компонент «экологическая безопасность» входит в структуру национальной безопасности государства, общества и отдельной личности человека.

В октябре 2007 года в Санкт-Петербурге в рамках слушаний Общественной палаты РФ «О состоянии и перспективах экологического образования и просвещения в России» проходила Всероссийская конференция «Экологическая культура как один из определяющих факторов в решении социально-значимых задач». Конференция проведена с целью анализа состояния и перспектив развития экологического образования в России.

Признавая важность и значимость формирования экологической культуры, необходимость осуществления деятельности по непрерывному экологическому образованию населения, участники конференции обсудили ряд социальных проблем, решение которых связано с обобщением широкого мировоззренческого опыта, оригинальных идей, глубоких знаний и практического опыта в сфере экологических отношений.

На заключительном Пленарном заседании была принята резолюция, в которой говорится что участники конференции считают целесообразным:

Подтвердить, что создание условий для сохранения среды обитания и развития сферы образования является одним из основных направлений обеспечения национальной безопасности Российской Федерации;

Уделить внимание повышению уровня экологической компетентности при подготовке профессиональных кадров;

Экологизировать воспитательный процесс, возрождать духовные ценности, формировать экологическое сознание общества и личности, природосообразные стереотипы поведения;

Рассматривать в качестве одной из основных сфер интересов экологического образования адаптацию и социализацию детей и молодежи, преемственность поколений;

Содействовать возрождению и сохранению экологических традиций народов России, развитию экоэтнопедагогики;

Воспитывать у каждого нового поколения жителей России национальное самосознание, открытое для восприятия этнического своеобразия культур других народов;

Отметить возрастающую роль учреждений дополнительного образования в формировании экологической культуры;

Консолидировать усилия различных ведомств по решению вопросов, касающихся проблем экологического образования и воспитания;

Обеспечить подготовку и выпуск экологически компетентных специалистов, способных к ответственному участию в социально-значимых проектах;

Содействовать финансовому обеспечению образовательных учреждений разного уровня с целью реализации программ по формированию экологической культуры;

Выработать механизмы, способствующие широкому освещению в СМИ необходимости формирования экологической культуры;

Обеспечивать контроль за недопущением реализации обществом саморазрушительных, экологически необоснованных проектов, затрагивающих социоприродные интересы страны в целом.

Таким образом, сделан еще один значимый шаг на пути к успешному решению социально-значимых задач, стоящих перед современным российским обществом.


Список использованной литературы

1. Экология. Учеб.пособие под редакцией профессора С.А.Боголюбова – Москва, издательство «Знание», 1999г.

2. Гальперин М.В. Общая экология. Учебник – Москва, «ФОРУМ-ИНФА-М», 2006г.

3. Потапов А.Д. Экология. Учебник 2-е издание, исправленное и дополненное. Москва, «Высшая школа», 2004г.

4. Н.М.Чернова, А.М.Былова. Экология. Москва, «Просвещение»,1981г.

5. «Вестник экологического образования в России» №1 (№47) 2008, Москва.


Как разумной формы жизни и нового геологического агента в эволюции Земли. Прослеживая развитие биосферы и заполняющего ее монолита живого вещества, усиливающееся, обретающее геологическую мощь воздействие человека на биосферу, В.И. Вернадский завершает свои исследования новым обобщением. Он формулирует учение о ноосфере ("ноос", или "нус", означает разум) как особом периоде в развитии планеты и...

Материальную целостность "очеловеченной природы". В. И. Вернадский, предугадавший наступление эпохи научно-технической революции в XX веке, основной предпосылкой перехода биосферы в ноосферу считал научную мысль. Материальным ее выражением в преобразуемой человеком биосфере является труд. Единство мысли и труда не только создает новую социальную сущность человека, но и предопределяет переход...

Таким образом, стремясь к улучшению условий своей жизни человечество постоянно наращивает темпы материального производства, не задумываясь о последствиях, которые чреваты угрозой существования как биосферы, так и самого человека. В этом отношении, как писал академик Е. Федоров, вопрос состоит в том, "...будем ли мы способны так менять природную среду, чтобы сочетать естественные...

Биомассу, истощаемость современных энергоносителей, которые используются человечеством, уменьшить объемы использования ресурсов, сознательно отказавшись от излишков, перейти к тактике и стратегии рационального ресурсопользования. 3. ПРЕДЕЛЫ УСТОЙЧИВОСТИ БИОСФЕРЫ Биосфера выступает как огромная, чрезвычайно сложная экосистема, работающая в стационарном...

Миопатия, или расслоение мышечной ткани у осетровых.

В 1987-1989 гг. у половозрелых осетров наблюдалось массовое явление миопатии, заключающееся в расслоении больших участков мышечных волокон, вплоть до их полного лизиса. Заболевание, получившее сложное научное название - «кумулятивный политоксикоз с многосистемным поражением», носило кратковременный и массовый характер (по оценкам, до 90% рыб в «речной» период их жизни; хотя природа этого заболевания не выяснена, предполагается связь с загрязнением водной среды (включая залповые сбросы ртути на Волге, нефтяное загрязнение и др.). Само название «кумулятивный политоксикоз...», на наш взгляд, является паллиативом, предназначенным скрыть истинные причины проблемы, как и указания на «хроническое загрязнение моря». Во всяком случае, по наблюдениям в Туркменистане, по информации иранских и азербайджанских коллег, миопатия практически не проявлялась у южно-каспийской популяции осетров. В целом по Южному Каспию признаки миопатии фиксировались редко, включая «хронически загрязненное» западное побережье. Вновь изобретенное название болезни пользуется успехом у исследователей Каспия: оно применялось позже ко всем случаям массовой гибели животных (тюленя весной 2000 г., кильки - весной и летом 2001г.).

Ряд специалистов приводят убедительные сведения о корреляции доли червя нереиса в питании с интенсивностью заболевания у различных видов осетровых. При этом подчеркивается, что нереис накапливает токсические вещества. Так, севрюга, потребляющая больше всего нереиса, в наибольшей степени подвержена миопатии, а в наименьшей степени этому подвержена белуга, которая питается, в основном, рыбой. Таким образом, есть все основания предполагать, что проблема миопатии прямо связана с проблемой загрязнения речного стока и косвенно - с проблемой чужеродных видов.

Например:

1. Гибель кильки весной и летом 2001 г.

Количество кильки, погибшей в течение весны-лета 2001 г., оценивается в 250 тыс. т, или 40%. С учетом данных о завышении оценок ихтиомассы килек в предыдущие годы, трудно верить в объективность этих цифр. Очевидно, что на Каспии погибло не 40%, а почти вся килька (не менее 80% популяции). Сейчас очевидно, что причиной массовой гибели кильки было не заболевание, а банальный недостаток питания. Тем не менее в официальных заключениях фигурирует «пониженный иммунитет в результате «кумулятивного политоксикоза».

2. Чума плотоядных у каспийского тюленя.

Как сообщали средства массовой информации, с апреля 2000 г. на Северном Каспии наблюдалась массовая гибель тюленей. Характерные признаки погибших и ослабленных животных - красные глаза, забитый нос. Первой гипотезой о причинах гибели было отравление, что отчасти подтвердилось нахождением повышенных концентраций тяжелых металлов и стойких органических загрязнителей в тканях погибших животных. Однако эти содержания не были критическими, в связи с чем была выдвинута гипотеза «кумулятивного политоксикоза». Проведенные «по горячим следам» микробиологические анализы давали неясную и неоднозначную картину.

Чумы плотоядных (собачьей чумки).Лишь спустя несколько месяцев удалось провести вирусологический анализ и определить непосредственную причину гибели - морбиллевирус

Согласно официальному заключению КаспНИРХа толчком к развитию заболевании могли послужить хронический «кумулятивный политоксикоз» и крайне неблагоприятные зимние условия. Чрезвычайно мягкая зима со среднемесячной температурой в феврале, на 7-9 градусов превышающей норму, отразилась на льдообразовании. Слабый ледовый покров просуществовал ограниченное время только в восточном секторе Северного Каспия. Линька животных происходила не на ледовых залежках, а в условиях большей скученности нa шалыгах восточного мелководья, периодическое затопление которых под влиянием нагонов усугубляло состояние линяющих тюленей.

3. Гибель тюленей

Схожая эпизоотия (хотя и в меньших масштабах) с выбросом на берег 6000 тюленей имела место в 1997 г. на Апшероне. Тогда одной из вероятных причин гибели тюленя также называлась чума плотоядных. Особенностью трагедии 2000 г. было ее проявление по всему морю (в частности, гибель тюленей на туркменском побережье началась за 2-3 недели до событий в Северном Каспии). Целесообразно рассматривать высокую степень истощения значительной части погибших животных как самостоятельный факт, отдельно от поставленного диагноза.

Большая часть популяции тюленя нагуливает жир в теплое время, а в холодный период мигрирует к северу, где на льду происходит размножение и линька. В этот период тюлень идет в воду крайне неохотно. По сезонам наблюдается резкая изменчивость пищевой активности. Так, в период размножения и линьки более половины желудков исследованных животных оказываются пустыми, что объясняется не только физиологическим состоянием организма, но и бедностью подледной кормовой базы (основные объекты - бычки и крабики).

Во время нагула компенсируется до 50% общего веса тела, потерянного за зиму. Годовая потребность популяции тюленя в пище - 350-380 тыс. т, из которых 89,4% потребляется в летний, нагульный период (май-октябрь). Основным кормом летом служит килька (80% рациона).

Исходя из этих цифр, тюленем съедалось 280-300 тыс. т кильки в год. Судя по снижению уловов кильки, недостаток питания в 1999 г. можно оценить величиной примерно в 100 тыс. т., или 35%. Едва ли это количество может быть компенсировано за счет других кормовых объектов.

Можно считать весьма вероятным, что эпизоотия среди тюленей весной 2000 г. была спровоцирована недостатком питания (кильки), что, в свою очередь, было следствием перевылова и, возможно, вселения гребневика мнемиопсиса. В связи с продолжающимся сокращением запасов кильки следует ожидать повторения массовой гибели тюленя в ближайшие годы.

При этом в первую очередь популяция будет терять весь приплод (не нагулявшие жир животные либо не вступят в размножение, либо сразу же потеряют детенышей). Возможно, будет гибнуть и значительная часть способных к размножению самок (беременность и лактация - истощение организма и т.д.). Структура популяции изменится коренным образом.

Следует с осторожностью относиться к обилию «аналитических данных» во всех вышеперечисленных случаях. Почти полностью отсутствовали какие-либо данные о половом и возрастном составе погибших животных, методике оценки общего количества, практически отсутствовали или не были обработаны данные проб, взятых с этих животных. Вместо этого приводятся химические анализы по большому спектру компонентов (включая тяжелые металлы и органические вещества), обычно без сведений о методах отбора проб, аналитических работ, стандартах и т.д. Как следствие, «заключения» пестрят многочисленными несуразностями. Например, в заключении Всероссийского научно-исследовательского института контроля, стандартизации и сертификации ветеринарных препаратов (растиражированном «Гринписом» во множестве СМИ) присутствует «372 мг/кг полихлорбифенилов». Если заменить миллиграммы на микрограммы, то это довольно высокое содержание, характерное, например, для женского грудного молока у людей, питающихся рыбной пищей. Кроме того, совершенно не была принята во внимание доступная информация об эпизоотиях морбиллевируса у родственных видов нерп (Байкал, Белое море и т.д.); состояние популяций кильки как основного объекта питания также не было проанализировано.

3. Проникновение чужеродных организмов

Угроза проникновения чужеродных видов до недавнего прошлого не считалась серьезной. Наоборот, Каспийское море использовалось в качестве полигона для вселения новых видов, предназначенных для увеличения рыбопродуктивности бассейна. Надо заметить, что эти работы в основном велись на основе научных прогнозов; в ряде случаев производилось одновременное вселение рыбы и кормового объекта (например, кефаль и червь нереис). Обоснования вселения того или иного вида были достаточно примитивными и не учитывали отдаленных последствий (например, появление пищевых тупиков, конкуренция за пищу с более ценными аборигенными видами, накопление токсических веществ и т.п.). Уловы рыбы с каждым годом уменьшались, в структуре уловов ценные виды (сельди, судак, сазан) сменялись менее ценными (мелкий частик, килька). Из всех вселенцев только кефали дали небольшую прибавку (порядка 700 т, в лучшие годы - до 2000 т) рыбной продукции, что никак не может компенсировать нанесенный вселением ущерб.

События приняли драматический характер, когда на Каспии началось массовое размножение гребневика мнемиопсиса (Mnemiopsis leidyi). По сведениям КаспНИРХа официально мнемиопсис на Каспии был впервые зафиксирован осенью 1999 г. Однако первые непроверенные данные относятся уже к середине 80-х гг., в середине 90-х появились первые предупреждения о возможности его появления и потенциальном ущербе, основанные на черноморско-азовском опыте.

Судя по отрывочным сведениям, численность гребневика в том или ином районе подвержена резким изменениям. Так, туркменские специалисты наблюдали большие скопления мнемиопсиса в районе Авазы в июне 2000 г., в августе того же года он в этом районе зафиксирован не был, а в августе 2001 г. концентрация мнемиопсиса составляла от 62 до 550 орг/м3.

Парадоксально, что официальная наука в лице КаспНИРХа до самого последнего момента отрицала влияние мнемиопсиса на рыбные запасы. В начале 2001 г. в качестве причины 3-4-кратного падения уловов кильки выдвигался тезис об «уходе косяков на другие глубины», и только весной того же года, после массовой гибели кильки было признано, что мнемиопсис сыграл роль в этом явлении.

Гребневик впервые появился в Азовском море лет десять назад, и в течение 1985-1990 гг. буквально опустошил Азовское и Черное моря. Его, по всей вероятности, завезли вместе с балластными водами на судах от берегов Северной Америки; дальнейшее проникновение в Каспий не составило большого труда. Питается в основном зоопланктоном, потребляя ежесуточно пищи примерно 40% от собственного веса, уничтожая таким образом пищевую базу каспийских рыб. Быстрое размножение и отсутствие естественных врагов ставят его вне конкуренции с другими потребителями планктона. Поедая также планктонные формы бентосных организмов, гребневик представляет угрозу и для наиболее ценных рыб-бентофагов (осетровые). Воздействие на хозяйственно ценные виды рыб проявляется не только косвенно, через уменьшение кормовой базы, но и в прямом их уничтожении. Под основным прессом оказываются кильки, солоноватоводные сельдевые и кефали, чья икра и личинки развиваются в толще воды. Икра морского судака, атерины и бычков на грунте и растениях, возможно, избежит прямого выедания хищником, но при переходе к личиночному развитию они также станут уязвимы. К факторам, ограничивающим распространение гребневика на Каспии, относятся соленость (ниже 2 г/л) и температура воды (ниже +40С).

Если ситуация на Каспии будет развиваться так же, как в Азовском и Черном морях, то полная потеря рыбохозяйственного значения моря произойдет между 2012-2015 гг.; общий ущерб составит около 6 млрд. долларов в год. Есть основания считать, что в силу большой дифференцированности условий Каспия, значительных изменений солености, температуры вод и содержания питательных элементов по сезонам и акватории, воздействие мнемиопсиса будет не столь опустошительным, как в Черном море.

Спасением экономического значения моря возможно станет срочное вселение его естественного врага, хотя эта мера не в состоянии восстановить разрушенные экосистемы. Пока рассматривается только один претендент на эту роль - гребневик берое. Между тем имеются большие сомнения относительно эффективности берое в условиях Каспия, т.к. он более чувствителен к температуре и солености воды, чем мнемиопсис.

4. Перелов и браконьерство

Среди специалистов рыбохозяйственной отрасли широко распространено мнение, что в результате экономических неурядиц в прикаспийских государствах в 90-е годы запасы практически всех видов экономически ценных рыб (кроме осетровых) недоиспользовались. В то же время анализ возрастной структуры вылавливаемой рыбы показывает, что даже в это время имел место существенный перелов (по крайней мере, анчоусовидной кильки). Так, в уловах кильки 1974 г. более 70% составляли рыбы возрастом 4-8 лет. В 1997 г. доля этой возрастной группы снизилась до 2%, а основную массу составляли рыбы возрастом 2-3 года. Квоты на вылов продолжали расти вплоть до конца 2001 г. Общий допустимый улов (ОДУ) на 1997 г. был определен в 210-230 тыс. т, освоено - 178,2 тыс. т, разница была отнесена на счет «экономических трудностей». В 2000 г. ОДУ был определен в 272 тыс. т, освоено - 144,2 тыс. т. В последние 2 месяца 2000 г. уловы кильки упали в 4-5 раз, однако даже это не повлекло переоценки численности рыбы, и в 2001 г. ОДУ был повышен до 300 тыс. т. И даже после массовой гибели кильки КаспНИРХом прогноз улова на 2002 г. был снижен незначительно (в частности, российская квота была снижена с 150 до 107 тыс. т). Этот прогноз абсолютно нереалистичен и отражает только стремление продолжать эксплуатацию ресурса даже в явно катастрофической ситуации.

Это заставляет с осторожностью относиться к научным обоснованиям квот, выданным КаспНИРХом за прошедшие годы по всем видам рыб. Это говорит о необходимости передачи определения лимитов эксплуатации биоресурсов в руки природоохранных организаций.

В наибольшей степени просчеты отраслевой науки сказались на состоянии осетровых. Кризис был очевиден еще в 80-е гг. С 1983 по 1992 г. уловы каспийских осетровых снизились в 2,6 раза (с 23,5 до 8,9 тыс. т), а за следующие восемь лет - еще в 10 раз (до 0,9 тыс. т в 1999 г.).

Для популяций этой группы рыб налицо большое количество угнетающих факторов, среди которых наиболее существенными считаются три: изъятие природных нерестилищ, миопатия и браконьерство. Беспристрастный анализ показывает, что ни один из этих факторов не был до последнего времени критическим.

Последний фактор сокращения осетровых популяций требует особенно тщательного анализа. Оценки браконьерского вылова стремительно выросли на наших глазах: от 30-50% от официального вылова в 1997 г. до 4-5 крат (1998 г.) и 10-11-14-15 раз в течение 2000-2002 гг. В 2001 г. объем незаконной добычи КаспНИРХом был оценен в 12-14 тыс. т осетровых и 1,2 тыс. т икры; эти же цифры фигурируют в оценках СИТЕС, в заявлениях Госкомрыболовства РФ. Учитывая высокую цену на черную икру (от 800 до 5000 долларов за кг в странах Запада), через СМИ широко распространялись слухи об «икорной мафии», контролирующей якобы не только рыболовство, но и правоохранительные органы в прикаспийских регионах. Действительно, если объемы теневых операций составляют сотни миллионов - несколько миллиардов долларов, эти цифры сопоставимы с бюджетом таких стран, как Казахстан, Туркменистан и Азербайджан.

Трудно представить, что финансовые ведомства и силовые структуры этих стран, а также Российской Федерации не замечают таких потоков средств и товаров. Между тем статистика выявляемых правонарушений выглядит на несколько порядков скромнее. Например, по РФ ежегодно изымается порядка 300 т рыбы и 12 т икры. За все время после распада СССР были зафиксированы лишь единичные попытки незаконного вывоза черной икры за рубеж.

Кроме того, едва ли возможно незаметно переработать 12-14 тыс. т осетровых и 1,2 тыс. т икры. Для переработки таких же объемов в СССР в 80-е годы существовала целая индустрия, армия хозяйственников была задействована на поставках соли, посуды, упаковочных материалов и т.п.

Вопрос о морском лове осетров. Существует предубеждение, что именно запрет морского лова осетров в 1962 г. позволил восстановить популяции всех видов. На самом деле здесь смешивается два принципиально разных запрета. Реальную роль в сохранении осетровых сыграл запрет сейнерного и дрифтерного лова сельдей и частиковых, при котором происходило массовое уничтожение молоди осетров. Собственно запрет морского промысла едва ли сыграл значительную роль. С биологической точки зрения этот запрет никакого смысла не имеет, зато имеет большой коммерческий смысл. Вылов идущей на нерест рыбы технически прост и позволяет получать больше икры, чем где бы то ни было (10%). Запрет морского лова позволяет сосредоточить производство в устьях Волги и Урала и облегчает контроль над ним, включая манипулирование квотами.

Анализируя хронику борьбы с браконьерством на Каспии, можно выделить две важных даты. В январе 1993 г. было принято решение подключить к этой проблеме погранвойска, ОМОН и другие силовые структуры, что, однако, незначительно сказалось на объемах изымаемой рыбы. В 1994 г., когда действия этих структур были скоординированы на работу в дельте Волги (операция «Путина»), количество изымаемой рыбы возросло почти втрое.

Морской лов сложен, никогда не давал более 20% улова осетровых. В частности, у берегов Дагестана, который сейчас считается едва ли не главным поставщиком браконьерской продукции, в период разрешенного морского лова добывалось не более 10%. Вылов осетровых в устьях рек во много раз эффективнее, особенно при низкой популяции. К тому же в реках выбивается «элита» осетрового стада, тогда как в морях скапливается рыба с нарушенным хомингом.

Примечательно, что Иран, ведущий в основном морской промысел осетров, за последние годы не только не снизил, но и постепенно увеличивает вылов, став основным поставщиком икры на мировой рынок, несмотря на то, что южно-каспийское стадо должно быть истреблено браконьерами Туркменистана и Азербайджана. Для сохранения молоди осетровых Иран пошел даже на сокращение традиционного для этой страны лова кутума.

Очевидно, что морской лов не является определяющим фактором сокращения популяций осетровых. Основной ущерб рыбе наносится там, где сосредоточен ее основной вылов - в устьях Волги и Урала.

5. Зарегулирование речного стока. Изменение естественных биогеохимических циклов

Массированное гидростроительство на Волге (а затем на Куре и других реках) начиная с 30-х гг. XX века лишило осетровых Каспия большей части их естественных нерестилищ (для белуги - 100%). Для компенсации этого ущерба строились и строятся рыбоводные заводы. Количество выпускаемых (иногда только на бумаге) мальков служит одним из главных оснований для определения квот вылова ценной рыбы. Между тем ущерб от потерь продукции моря распределяется на все прикаспийские страны, а выгоды от гидроэнергетики и ирригации - только странам, на территории которых произошло регулирование стока. Такое положение не стимулирует прикаспийские страны к восстановлению естественных нерестилищ, к сохранению других естественных местообитаний - мест нагула, зимовки осетровых и т.п.

Рыбопропускные сооружения на плотинах страдают множеством технических недостатков, система подсчета идущей на нерест рыбы также далека от совершенства. Однако при самых лучших системах, скатывающая по реке молодь, не будет возвращаться в море, а будет образовывать искусственные популяции в загрязненных и бедных кормами водохранилищах. Именно плотины, а не загрязнение вод наряду с переловом послужили главной причиной сокращения осетрового стада. Примечательно, что после разрушения Каргалинского гидроузла осетр был замечен на нересте в свехзагрязненном верхнем течении Терека. Между тем строительство плотин повлекло за собой еще большие проблемы. Северный Каспий некогда был богатейшей частью моря. Сюда Волга приносила минеральный фосфор (около 80% от общего поступления), давая основную часть первичной биологической (фотосинтетической) продукции. Как следствие, 70% запасов осетровых формировалось в этой части моря. Теперь большая часть фосфатов потребляется в волжских водохранилищах, а в море фосфор попадает уже в виде живой и отмершей органики. В результате этого биологический цикл коренным образом изменился: укорачивание трофических цепочек, преобладание деструкционной части цикла и т.д. Зоны максимальной биопродуктивности сейчас - в зонах апвеллинга (это процесс, при котором глубинные воды океана поднимаются к поверхности) вдоль Дагестанского побережья и на свалах глубин Южного Каспия. В эти районы сместились и основные места нагула ценной рыбы. Образовавшиеся «окна» в пищевых цепочках, разбалансированные экосистемы создают благоприятные условия для проникновения чужеродных видов (гребневик мнемиопсис и т.п.).

В Туркменистане деградация нерестилищ трансграничной реки Атрек обусловлена комплексом причин, включая снижение водности, зарегулирование стока на территории Исламской Республики Иран, заиливание русла. Нерест полупроходных рыб зависит от водности реки Атрек, что приводит к напряженному состоянию промысловых запасов атрекского стада каспийской воблы и сазана. Влияние зарегулирования Атрека на деградацию нерестилищ не обязательно выражается в недостатке объемов воды. Атрек - одна из самых мутных рек мира, поэтому в результате сезонного изъятия воды происходит быстрое заиливание русла. Урал остается единственной незарегулированной из крупных рек Каспийского бассейна. Однако состояние нерестилищ на этой реке также весьма неблагополучное. Главной проблемой на сегодняшний день является заиливание русла. Когда-то почвы в долине Урала были защищены лесами; позднее эти леса были вырублены, а пойма распахана почти до уреза воды. После того, как «в целях сохранения осетровых» на Урале было прекращено судоходство, прекратились работы по чистке фарватера, что сделало недоступными большую часть нерестилищ на этой реке.

6. Эвтрофикация

Эвтрофикация - это насыщение водоемов биогенными элементами, сопровождающиеся ростом биологической продуктивности водных бассейнов. Эвтрофикация может быть результатом как естественного старения водоема, так и антропогенных воздействий. Основные химические элементы, способствующие эвтрофикации - фосфор и азот. В некоторых случаях используется термин «гипертрофизация».

Высокий уровень загрязнения моря и впадающих в него рек уже давно вызывали опасения формирования бескислородных зон в Каспии, особенно для районов южнее Туркменского залива, хотя эта проблема не числилась в наиболее приоритетных. Однако последние надежные данные по этому вопросу относятся к началу 80-х гг. Между тем, существенное нарушение баланса синтеза и распада органического вещества в результате внедрения гребневика мнемиопсиса может привести к серьезным и даже катастрофическим изменениям. Поскольку мнемиопсис не несет угрозы фотосинтетической деятельности одноклеточных водорослей, но влияет на деструктивную часть цикла (зоопланктон - рыбы - бентос), отмирающее органическое вещество будет накапливаться, вызывая сероводородное заражение придонных слоев воды. Отравление оставшегося бентоса приведет к прогрессирующему разрастанию анаэробных участков. Можно уверенно прогнозировать формирование обширных бескислородных зон везде, где есть условия для длительной стратификации вод, особенно в местах смешения пресной и соленой воды, массовой продукции одноклеточных водорослей. Эти места совпадают с участками поступления фосфора - на свалах глубин Среднего и Южного Каспия (зоны апвеллинга) и на границе Северного и Среднего Каспия. Для Северного Каспия также отмечены участки с пониженным содержанием кислорода; проблема усугубляется наличием ледового покрова в зимние месяцы. Эта проблема еще более усугубит положение коммерчески ценных видов рыб (заморы; препятствия на путях миграции и др.).

Кроме того, трудно спрогнозировать, как в новых условиях будет эволюционировать таксономический состав фитопланктона. В ряде случаев при высоком поступлении питательных веществ не исключено формирование «красных приливов», примером чего могут служить процессы в бухте Соймонова (Туркменистан).

7. Опишите процесс, обеспечивающий постоянство газового состава воды

В воздухе всегда содержится водяной пар, как в газообразном, так и в жидком (вода) или твердом (лед) состоянии, в зависимости от температуры. Основным источником поступления пара в атмосферу является океан. Пар поступает в атмосферу также от растительного покрова Земли.

У поверхности моря воздух постоянно смешивается с водой: воздух поглощает влагу, которая уносится морскими ветрами, атмосферные газы проникают в воду и растворяются в ней. Морские ветры, доставляя все новые потоки воздуха к поверхности воды, облегчают проникновение атмосферного воздуха в воду океана.

Растворимость газов в воде зависит от трех факторов: температуры воды, парционального давления газов, входящих в состав атмосферного воздуха, и их химического состава. В холодной воде газы растворяются лучше, чем в теплой. С повышением температуры воды с поверхности моря выделяются растворенные газы в холодных областях, а в тропиках частично возвращают их в атмосферу. Конвективное перемешивание воды обеспечивает проникновение растворенных в воде газов по всей толще воды, вплоть до океанского дна.

Три газа, составляющих основную часть атмосферы, - азот, кислород и углекислый газ, в больших количествах присутствуют и в океанских водах.Главным источником насыщения океанских вод газами является атмосферный воздух.

8. Объясните понятие «обмен веществ и энергии»

Выделение энергии происходит в результате окисления сложных органических веществ, входящих в состав клеток, тканей и органов человека до образования более простых соединений. Расход этих питательных веществ организмом называется диссимиляцией. Образующиеся в процессе окисления простые вещества (вода, углекислый газ, аммиак, мочевина) выводятся из организма с мочой, калом, выдыхаемым воздухом, через кожу. Процесс диссимиляции находится в прямой зависимости от расхода энергии на физический труд и теплообмен.

Восстановление и создание сложных органических веществ клеток, тканей, органов человека происходит за счет простых веществ переваренной пищи. Процесс накопления этих питательных веществ и энергии в организме называется ассимиляцией. Процесс ассимиляции, следовательно, зависит от состава пищи, обеспечивающей организм всеми питательными веществами.

Процессы диссимиляции и ассимиляции протекают одновременно, в тесном взаимодействии и имеют общее название -- процесс обмена веществ. Он складывается из обмена белков, жиров, углеводов, минеральных веществ, витаминов и водного обмена.

Обмен веществ находится в прямой зависимости от расхода энергии (на труд, теплообмен и работу внутренних органов) и состава пищи.

Обмен веществ в организме человека регулируется центральной нервной системой непосредственно и через гормоны, вырабатываемые железами внутренней секреции. Так на белковый обмен влияет гормон щитовидной железы (тироксин), на углеводный -- гормон поджелудочной железы (инсулин), на жировой обмен -- гормоны щитовидной железы, гипофиза, надпочечников.

Суточный расход энергии человека. Для обеспечения человека пищей, соответствующей его энергетическим затратам и пластическим процессам, необходимо определить суточный расход энергии.

За единицу измерения энергии человека принято считать килокалорию. В течение суток человек тратит энергию на работу внутренних органов (сердца, пищеварительного аппарата, легких, печени, почек и т.д.), теплообмен и выполнение общественно полезной деятельности (работа, учеба, домашний труд, прогулки, отдых). Энергия, затрачиваемая на работу внутренних органов и теплообмен, называется основным обменом. При температуре воздуха 20° С, полном покое, натощак основной обмен составляет 1 ккал в 1ч на 1 кг массы тела человека. Следовательно, основной обмен зависит от массы тела, а также от пола и возраста человека.

9. Перечислите типы экологических пирамид

Экологическая пирамида - графические изображения соотношения между продуцентами и консументами всех уровней (травоядных, хищников; видов, питающихся другими хищниками) в экосистеме.

Схематически изображать эти соотношения предложил американский зоолог Чарльз Элтон в 1927 году.

При схематическом изображении каждый уровень показывают в виде прямоугольника, длина или площадь которого соответствует численным значениям звена пищевой цепи (пирамида Элтона), их массе или энергии. Расположенные в определенной последовательности прямоугольники создают различные по форме пирамиды.

Основанием пирамиды служит первый трофический уровень - уровень продуцентов, последующие этажи пирамиды образованы следующими уровнями пищевой цепи - консументами различных порядков. Высота всех блоков в пирамиде одинакова, а длина пропорциональна числу, биомассе или энергии на соответствующем уровне.

Экологические пирамиды различают в зависимости от показателей, на основании которых строится пирамида. При этом для всех пирамид установлено основное правило, согласно которому в любой экосистеме больше растений, чем животных, травоядных, чем плотоядных, насекомых, чем птиц.

На основе правила экологической пирамиды можно определить или рассчитать количественные соотношения разных видов растений и животных в естественных и искусственно создаваемых экологических системах. Например, 1 кг массы морского зверя (тюленя, дельфина) нужно 10 кг съеденной рыбы, а этим 10 кг нужно уже 100 кг их корма - водных беспозвоночных, которым в свою очередь для образования такой массы необходимо съедать 1000 кг водорослей и бактерий. В данном случае экологическая пирамида будет устойчива.

Однако, как известно, из каждого правила бывают исключения, которые будут рассмотрены в каждом типе экологических пирамид.

Типы экологических пирамид

1. Пирамида чисел.

Рис. 1

Пирамиды чисел - на каждом уровне откладывается численность отдельных организмов

Пирамида чисел отображает отчетливую закономерность, обнаруженную Элтоном: количество особей, составляющих последовательный ряд звеньев от продуцентов к консументам, неуклонно уменьшается (рис.1).

Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. В данном случае пирамида будет иметь вид треугольника с широким основанием суживающимся кверху.

Однако подобная форма пирамиды чисел характерна не для всех экосистем. Иногда они могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами - насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых), поэтому пирамиды чисел наименее информативны и наименее показательны, т.е. численность организмов одного трофического уровня в значительной степени зависит от их размеров.

2. Пирамиды биомасс

Рис. 2

Пирамиды биомасс - характеризует общую сухую или сырую массу организмов на данном трофическом уровне, например, в единицах массы на единицу площади - г/м2, кг/га, т/км2 или на объем - г/м3 (рис.2)

Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели консументов второго порядка и т.д.

В данном случае (если организмы не слишком различаются по размерам) пирамида также будет иметь вид треугольника с широким основанием суживающимся кверху. Однако и из этого правила имеются существенные исключения. Например, в морях биомасса растительноядного зоопланктона существенно (иногда в 2-3 раза) больше биомассы фитопланктона, представленного преимущественно одноклеточными водорослями. Это объясняется тем, что водоросли очень быстро выедаются зоопланктоном, но от полного выедания их предохраняет очень высокая скорость деления их клеток.

В целом для наземных биогеоценозов, где продуценты крупные и живут сравнительно долго, характерны относительно устойчивые пирамиды с широким основанием. В водных же экосистемах, где продуценты невелики по размеру и имеют короткие жизненные циклы, пирамида биомасс может быть обращенной, или перевернутой (острием направлена вниз). Так, в озерах и морях масса растений превышает массу потребителей только в период цветения (весной), а в остальное время года может создаться обратное положение.

Пирамиды чисел и биомасс отражают статику системы, т. е. характеризуют количество или биомассу организмов в определенный промежуток времени. Они не дают полной информации о трофической структуре экосистемы, хотя позволяют решать ряд практических задач, особенно связанных с сохранением устойчивости экосистем.

Пирамида чисел позволяет, например, рассчитывать допустимую величину улова рыбы или отстрела животных в охотничий период без последствий для нормального их воспроизведения.

К числу экологических уронов, которые имеют самую длинную историю и принесли биосфере максимально ущерб, относят разрушение экосистем , их опустынивание , т. е. потеря способности к саморегулированию и самовосстановлению. Растительность в этом случае уничтожается, а почвы теряют свое главное качество – плодородие.

Опустынивание сопровождало человека с момента его перехода к ведению примитивного хозяйства. Этому содействовало 3 процесса: эрозия почв, изъятие из почвы химических элементов с урожаем, вторичное засоление почв при поливном земледелии.

Зачастую эти процессы накладывались на неблагоприятное изменение климата, его засушливость. Обширные песчаные пространства, расположенные в долинах рек степной зоны, неоднократно подвергались эрозии почв ветром и полным или частичным опустыниванием.

Такие явления разрушения и формирования экосистем могли повторяться не раз, что находило отражение в рельефе, ландшафтах, строении почвенного покрова.

Наиболее часто причиной разрушений был перевыпас скота и затем ветровая эрозия. В более поздние времена – воздействие техники, вспашка целинных почв. В 1960-е г. при освоении целинных и залежных земель почти все распаханные легкие почвы – около 5 млн га – были превращены в подвижные субстраты. Потребовались огромные усилия для того, чтобы остановить этот процесс лесоразведением, травосеянием и т. п. Возвращение таких земель к интенсивному использованию (пастбищам) потребует длительного времени.

Опустынивание происходит и в настоящее время. В частности, разрушаются ценнейшие черноземы Калмыкии. При норме выпаса не более 750 тыс. голов овец здесь все время выпасалось 1 млн 650 тыс. голов. Кроме того, здесь обитало более 200 тыс. сайгаков. Пастбища оказались перегруженными в 3 раза. В результате из 3 млн га пастбищ 650 тыс. га превратились в подвижные пески. Катастрофические масштабы приобретает опустынивание северной окраины Сахары, Сахеля (переходной полосы между пустыней и саванной). Ее опустынивание также обусловлено большими нагрузками на экосистемы, усилившимися длительными засухами 1960 – 1970-х г г. Также опустыниванию способствовала успешная борьба с мухой цеце. Это позволило резко увеличить поголовье скота, последовали перевыпас, оскудение пастбищ, как следствие – разрушение экосистем.

Опустыниванием в той или иной степени затронуто около 53% территории Африки и 34% территории Азии. В целом в мире каждый год около 20 млн га земель превращается в пустыни.

52. Экологические уроки. Каспийское и Аральское моря

Каспийское море – замкнутый внутренний, редкий по богатству рыбой водоем. В прошлом он давал около 90 % от всего мирового улова осетровых Сейчас осетровые находятся под угрозой исчезновения. Причина этого – браконьерский лов рыбы, загрязнение воды, нарушение мест нереста из-за строительства плотин на реках. Море находится сегодня в кризисном состоянии, лишается свойств саморегулирования и самоочищения.

Для Каспия закономерны были периодические колебания уровней воды. С 1820 по 1930 гг. уровень моря оставался сравнительно стабильным. Но в 1930-е гг. началось интенсивное падение уровня воды в море. К 1945 г. он понизился на 1,75 м, а к 1977 г. – на 3 м ниже отметки начала века. Площадь поверхности моря уменьшилась. Ожидали, что к 2000 г. уровень воды в море понизится еще на 3 – 5 м, а водоем потеряет рыбохозяйственное значение, разрушится как экосистема и нужны будут большие экономические вложения в связи с переносом портов, селений и т. п.

Было решено принять меры для приостановления или замедления падения уровня моря. Но еще до завершения строительства уровень воды в Каспии стал быстро уменьшаться. Было ясно, что основной причиной колебания уровня моря явились не антропогенные, а природные факторы. Главный вывод из этого экологического урока в том, что принятию любых масштабных решений по воздействию на природную среду должен предшествовать полный анализ явлений. Благие намерения не достигли цели, а усугубили отрицательные явления разрушения залива Кара-Богаз-Гол как экосистемы.

Аральское море являлось внутренним водоемом со слабосолеными водами. По величине занимало второе место после Каспия. Падение уровня воды в море значительно увеличилось с 1960-х гг., когда воду стали изымать для полива. Кроме этого, значительное ее количество отводилось в Каракумский канал. К середине 1980-х г г. уровень моря снизился на 8 м, в 1990-х г г. – на 14-15 м. Объем воды в море уменьшился более чем на 50 %.

Так, из-за понижения уровня воды море как экосистема перестало существовать. Оно распалось на два водоема, соленость воды в нем возросла в 3 раза. За этим последовала гибель наиболее продуктивных экосистем, обеднение видового состава флоры и фауны. Серьезные экологические издержки в Приаралье связаны со строительством и эксплуатацией Каракумского канала. Таков результат нерационального и нехозяйского использования ценнейших водных ресурсов. В районе Аральского моря и Приаралья создалась обстановка зоны экологического бедствия.



Рассказать друзьям