Чему равно д в арифметической прогрессии. Термины и обозначения

💖 Нравится? Поделись с друзьями ссылкой

В чём главная суть формулы?

Эта формула позволяет найти любой ПО ЕГО НОМЕРУ "n" .

Разумеется, надо знать ещё первый член a 1 и разность прогрессии d , ну так без этих параметров конкретную прогрессию и не запишешь.

Заучить (или зашпаргалить) эту формулу мало. Надо усвоить её суть и поприменять формулу в различных задачках. Да ещё и не забыть в нужный момент, да...) Как не забыть - я не знаю. А вот как вспомнить, при необходимости, - точно подскажу. Тем, кто урок до конца осилит.)

Итак, разберёмся с формулой n-го члена арифметической прогрессии.

Что такое формула вообще - мы себе представляем.) Что такое арифметическая прогрессия, номер члена, разность прогресии - доступно изложено в предыдущем уроке. Загляните, кстати, если не читали. Там всё просто. Осталось разобраться, что такое n-й член.

Прогрессию в общем виде можно записать в виде ряда чисел:

a 1 , a 2 , a 3 , a 4 , a 5 , .....

a 1 - обозначает первый член арифметической прогрессии, a 3 - третий член, a 4 - четвёртый, и так далее. Если нас интересует пятый член, скажем, мы работаем с a 5 , если сто двадцатый - с a 120 .

А как обозначить в общем виде любой член арифметической прогрессии, с любым номером? Очень просто! Вот так:

a n

Это и есть n-й член арифметической прогрессии. Под буквой n скрываются сразу все номера членов: 1, 2, 3, 4, и так далее.

И что нам даёт такая запись? Подумаешь, вместо цифры буковку записали...

Эта запись даёт нам мощный инструмент для работы с арифметической прогрессией. Используя обозначение a n , мы можем быстро найти любой член любой арифметической прогрессии. И ещё кучу задач по прогрессии решить. Сами дальше увидите.

В формуле n-го члена арифметической прогрессии:

a n = a 1 + (n-1)d

a 1 - первый член арифметической прогрессии;

n - номер члена.

Формула связывает ключевые параметры любой прогрессии: a n ; a 1 ; d и n . Вокруг этих параметров и крутятся все задачки по прогрессии.

Формула n-го члена может использоваться и для записи конкретной прогрессии. Например, в задаче может быть сказано, что прогрессия задана условием:

a n = 5 + (n-1)·2.

Такая задачка может и в тупик поставить... Нет ни ряда, ни разности... Но, сравнивая условие с формулой, легко сообразить, что в этой прогрессии a 1 =5, а d=2.

А бывает ещё злее!) Если взять то же условие: a n = 5 + (n-1)·2, да раскрыть скобки и привести подобные? Получим новую формулу:

a n = 3 + 2n.

Это Только не общая, а для конкретной прогрессии. Вот здесь и таится подводный камень. Некоторые думают, что первый член - это тройка. Хотя реально первый член - пятёрка... Чуть ниже мы поработаем с такой видоизменённой формулой.

В задачах на прогрессию встречается ещё одно обозначение - a n+1 . Это, как вы догадались, "эн плюс первый" член прогрессии. Смысл его прост и безобиден.) Это член прогрессии, номер которого больше номера n на единичку. Например, если в какой-нибудь задаче мы берём за a n пятый член, то a n+1 будет шестым членом. И тому подобное.

Чаще всего обозначение a n+1 встречается в рекуррентных формулах. Не пугайтесь этого страшного слова!) Это просто способ выражения члена арифметической прогрессии через предыдущий. Допустим, нам дана арифметическая прогрессия вот в таком виде, с помощью рекуррентной формулы:

a n+1 = a n +3

a 2 = a 1 + 3 = 5+3 = 8

a 3 = a 2 + 3 = 8+3 = 11

Четвёртый - через третий, пятый - через четвёртый, и так далее. А как посчитать сразу, скажем двадцатый член, a 20 ? А никак!) Пока 19-й член не узнаем, 20-й не посчитать. В этом и есть принципиальное отличие рекуррентной формулы от формулы n-го члена. Рекуррентная работает только через предыдущий член, а формула n-го члена - через первый и позволяет сразу находить любой член по его номеру. Не просчитывая весь ряд чисел по порядочку.

В арифметической прогрессии рекуррентную формулу легко превратить в обычную. Посчитать пару последовательных членов, вычислить разность d, найти, если надо, первый член a 1 , записать формулу в обычном виде, да и работать с ней. В ГИА подобные задания частенько встречаются.

Применение формулы n-го члена арифметической прогрессии.

Для начала рассмотрим прямое применение формулы. В конце предыдущего урока была задачка:

Дана арифметическая прогрессия (a n). Найти a 121 , если a 1 =3, а d=1/6.

Эту задачку можно безо всяких формул решить, просто исходя из смысла арифметической прогрессии. Прибавлять, да прибавлять... Часок-другой.)

А по формуле решение займёт меньше минуты. Можете засекать время.) Решаем.

В условиях приведены все данные для использования формулы: a 1 =3, d=1/6. Остаётся сообразить, чему равно n. Не вопрос! Нам надо найти a 121 . Вот и пишем:

Прошу обратить внимание! Вместо индекса n появилось конкретное число: 121. Что вполне логично.) Нас интересует член арифметической прогрессии номер сто двадцать один. Вот это и будет наше n. Именно это значение n = 121 мы и подставим дальше в формулу, в скобки. Подставляем все числа в формулу и считаем:

a 121 = 3 + (121-1)·1/6 = 3+20 = 23

Вот и все дела. Так же быстро можно было бы найти и пятьсот десятый член, и тысяча третий, любой. Ставим вместо n нужный номер в индексе у буквы "a" и в скобках, да и считаем.

Напомню суть: эта формула позволяет найти любой член арифметической прогрессии ПО ЕГО НОМЕРУ "n" .

Решим задание похитрее. Пусть нам попалась такая задачка:

Найдите первый член арифметической прогрессии (a n), если a 17 =-2; d=-0,5.

Если возникли затруднения, подскажу первый шаг. Запишите формулу n-го члена арифметической прогрессии! Да-да. Руками запишите, прямо в тетрадке:

a n = a 1 + (n-1)d

А теперь, глядя на буквы формулы, соображаем, какие данные у нас есть, а чего не хватает? Имеется d=-0,5, имеется семнадцатый член... Всё? Если считаете, что всё, то задачу не решите, да...

У нас ещё имеется номер n ! В условии a 17 =-2 спрятаны два параметра. Это и значение семнадцатого члена (-2), и его номер (17). Т.е. n=17. Эта "мелочь" часто проскакивает мимо головы, а без неё, (без "мелочи", а не головы!) задачу не решить. Хотя... и без головы тоже.)

Теперь можно просто тупо подставить наши данные в формулу:

a 17 = a 1 + (17-1)·(-0,5)

Ах да, a 17 нам известно, это -2. Ну ладно, подставим:

-2 = a 1 + (17-1)·(-0,5)

Вот, в сущности, и всё. Осталось выразить первый член арифметической прогрессии из формулы, да посчитать. Получится ответ: a 1 = 6.

Такой приём - запись формулы и простая подстановка известных данных - здорово помогает в простых заданиях. Ну, надо, конечно, уметь выражать переменную из формулы, а что делать!? Без этого умения математику можно вообще не изучать...

Ещё одна популярная задачка:

Найдите разность арифметической прогрессии (a n), если a 1 =2; a 15 =12.

Что делаем? Вы удивитесь, пишем формулу!)

a n = a 1 + (n-1)d

Соображаем, что нам известно: a 1 =2; a 15 =12; и (специально выделю!) n=15. Смело подставляем в формулу:

12=2 + (15-1)d

Считаем арифметику.)

12=2 + 14d

d =10/14 = 5/7

Это правильный ответ.

Так, задачи на a n , a 1 и d порешали. Осталось научиться номер находить:

Число 99 является членом арифметической прогрессии (a n), где a 1 =12; d=3. Найти номер этого члена.

Подставляем в формулу n-го члена известные нам величины:

a n = 12 + (n-1)·3

На первый взгляд, здесь две неизвестные величины: a n и n. Но a n - это какой-то член прогрессии с номером n ... И этот член прогрессии мы знаем! Это 99. Мы не знаем его номер n, так этот номер и требуется найти. Подставляем член прогрессии 99 в формулу:

99 = 12 + (n-1)·3

Выражаем из формулы n , считаем. Получим ответ: n=30.

А теперь задачка на ту же тему, но более творческая):

Определите, будет ли число 117 членом арифметической прогрессии (a n):

-3,6; -2,4; -1,2 ...

Опять пишем формулу. Что, нет никаких параметров? Гм... А глазки нам зачем дадены?) Первый член прогрессии видим? Видим. Это -3,6. Можно смело записать: a 1 =-3,6. Разность d можно из ряда определить? Легко, если знаете, что такое разность арифметической прогрессии:

d = -2,4 - (-3,6) = 1,2

Так, самое простое сделали. Осталось разобраться с неизвестным номером n и непонятным числом 117. В предыдущей задачке хоть было известно, что дан именно член прогрессии. А здесь и того не знаем... Как быть!? Ну, как быть, как быть... Включить творческие способности!)

Мы предположим, что 117 - это, всё-таки, член нашей прогрессии. С неизвестным номером n . И, точно как в предыдущей задаче, попробуем найти этот номер. Т.е. пишем формулу (да-да!)) и подставляем наши числа:

117 = -3,6 + (n-1)·1,2

Опять выражаем из формулы n , считаем и получаем:

Опаньки! Номер получился дробный! Сто один с половиной. А дробных номеров в прогрессиях не бывает. Какой вывод сделаем? Да! Число 117 не является членом нашей прогрессии. Оно находится где-то между сто первым и сто вторым членом. Если бы номер получился натуральным, т.е. положительным целым, то число было бы членом прогрессии с найденным номером. А в нашем случае, ответ задачи будет: нет.

Задача на основе реального варианта ГИА:

Арифметическая прогрессия задана условием:

a n = -4 + 6,8n

Найти первый и десятый члены прогрессии.

Здесь прогрессия задана не совсем привычным образом. Формула какая-то... Бывает.) Однако, эта формула (как я писал выше) - тоже формула n-го члена арифметической прогрессии! Она тоже позволяет найти любой член прогрессии по его номеру.

Ищем первый член. Тот, кто думает. что первый член - минус четыре, фатально ошибается!) Потому, что формула в задаче - видоизменённая. Первый член арифметической прогрессии в ней спрятан. Ничего, сейчас отыщем.)

Так же, как и в предыдущих задачах, подставляем n=1 в данную формулу:

a 1 = -4 + 6,8·1 = 2,8

Вот! Первый член 2,8, а не -4!

Аналогично ищем десятый член:

a 10 = -4 + 6,8·10 = 64

Вот и все дела.

А теперь, тем кто дочитал до этих строк, - обещанный бонус.)

Предположим, в сложной боевой обстановке ГИА или ЕГЭ, вы подзабыли полезную формулу n-го члена арифметической прогрессии. Что-то припоминается, но неуверенно как-то... То ли n там, то ли n+1, то ли n-1... Как быть!?

Спокойствие! Эту формулку легко вывести. Не очень строго, но для уверенности и правильного решения точно хватит!) Для вывода достаточно помнить элементарный смысл арифметической прогрессии и иметь пару-тройку минут времени. Нужно просто нарисовать картинку. Для наглядности.

Рисуем числовую ось и отмечаем на ней первый. второй, третий и т.п. члены. И отмечаем разность d между членами. Вот так:

Смотрим на картинку и соображаем: чему равняется второй член? Второй одно d :

a 2 =a 1 +1 ·d

Чему равняется третий член? Третий член равняется первый член плюс два d .

a 3 =a 1 +2 ·d

Улавливаете? Я не зря некоторые слова выделяю жирным шрифтом. Ну ладно, ещё один шаг).

Чему равняется четвёртый член? Четвёртый член равняется первый член плюс три d .

a 4 =a 1 +3 ·d

Пора сообразить, что количество промежутков, т.е. d , всегда на один меньше, чем номер искомого члена n . Т.е., до номера n, количество промежутков будет n-1. Стало быть, формула будет (без вариантов!):

a n = a 1 + (n-1)d

Вообще, наглядные картинки очень помогают решать многие задачи в математике. Не пренебрегайте картинками. Но если уж картинку нарисовать затруднительно, то... только формула!) Кроме того, формула n-го члена позволяет подключить к решению весь мощный арсенал математики - уравнения, неравенства, системы и т.д. Картинку-то в уравнение не вставишь...

Задания для самостоятельного решения.

Для разминки:

1. В арифметической прогрессии (a n) a 2 =3; a 5 =5,1. Найти a 3 .

Подсказка: по картинке задача решается секунд за 20... По формуле - сложнее получается. Но для освоения формулы - полезнее.) В Разделе 555 эта задачка решена и по картинке, и по формуле. Почувствуйте разницу!)

А это - уже не разминка.)

2. В арифметической прогрессии (a n) a 85 =19,1; a 236 =49, 3. Найти a 3 .

Что, неохота картинку рисовать?) Ещё бы! Уж лучше по формуле, да...

3. Арифметическая прогрессия задана условием: a 1 =-5,5; a n+1 = a n +0,5. Найдите сто двадцать пятый член этой прогрессии.

В этом задании прогрессия задана рекуррентным способом. Но считать до сто двадцать пятого члена... Не всем такой подвиг под силу.) Зато формула n-го члена по силам каждому!

4. Дана арифметическая прогрессия (a n):

-148; -143,8; -139,6; -135,4, .....

Найти номер наименьшего положительного члена прогрессии.

5. По условию задания 4 найти сумму наименьшего положительного и наибольшего отрицательного членов прогрессии.

6. Произведение пятого и двенадцатого членов возрастающей арифметической прогрессии равно -2,5, а сумма третьего и одиннадцатого членов равна нулю. Найти a 14 .

Не самая простая задачка, да...) Здесь способ "на пальцах" не прокатит. Придётся формулы писать да уравнения решать.

Ответы (в беспорядке):

3,7; 3,5; 2,2; 37; 2,7; 56,5

Получилось? Это приятно!)

Не всё получается? Бывает. Кстати, в последнем задании есть один тонкий момент. Внимательность при чтении задачи потребуется. И логика.

Решение всех этих задач подробно разобрано в Разделе 555. И элемент фантазии для четвёртой, и тонкий момент для шестой, и общие подходы для решения всяких задач на формулу n-го члена - всё расписано. Рекомендую.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Если каждому натуральному числу n поставить в соответствие действительное число a n , то говорят, что задано числовую последовательность :

a 1 , a 2 , a 3 , . . . , a n , . . . .

Итак, числовая последовательность — функция натурального аргумента.

Число a 1 называют первым членом последовательности , число a 2 вторым членом последовательности , число a 3 третьим и так далее. Число a n называют n-м членом последовательности , а натуральное число n его номером .

Из двух соседних членов a n и a n +1 последовательности член a n +1 называют последующим (по отношению к a n ), а a n предыдущим (по отношению к a n +1 ).

Чтобы задать последовательность, нужно указать способ, позволяющий найти член последовательности с любым номером.

Часто последовательность задают с помощью формулы n-го члена , то есть формулы, которая позволяет определить член последовательности по его номеру.

Например,

последовательность положительных нечётных чисел можно задать формулой

a n = 2n - 1,

а последовательность чередующихся 1 и -1 — формулой

b n = (-1) n +1 .

Последовательность можно определить рекуррентной формулой , то есть формулой, которая выражает любой член последовательности, начиная с некоторого, через предыдущие (один или несколько) члены.

Например,

если a 1 = 1 , а a n +1 = a n + 5

a 1 = 1,

a 2 = a 1 + 5 = 1 + 5 = 6,

a 3 = a 2 + 5 = 6 + 5 = 11,

a 4 = a 3 + 5 = 11 + 5 = 16,

a 5 = a 4 + 5 = 16 + 5 = 21.

Если а 1 = 1, а 2 = 1, a n +2 = a n + a n +1 , то первые семь членов числовой последовательности устанавливаем следующим образом:

a 1 = 1,

a 2 = 1,

a 3 = a 1 + a 2 = 1 + 1 = 2,

a 4 = a 2 + a 3 = 1 + 2 = 3,

a 5 = a 3 + a 4 = 2 + 3 = 5,

a 6 = a 4 + a 5 = 3 + 5 = 8,

a 7 = a 5 + a 6 = 5 + 8 = 13.

Последовательности могут быть конечными и бесконечными .

Последовательность называется конечной , если она имеет конечное число членов. Последовательность называется бесконечной , если она имеет бесконечно много членов.

Например,

последовательность двузначных натуральных чисел:

10, 11, 12, 13, . . . , 98, 99

конечная.

Последовательность простых чисел:

2, 3, 5, 7, 11, 13, . . .

бесконечная.

Последовательность называют возрастающей , если каждый её член, начиная со второго, больше чем предыдущий.

Последовательность называют убывающей , если каждый её член, начиная со второго, меньше чем предыдущий.

Например,

2, 4, 6, 8, . . . , 2n , . . . — возрастающая последовательность;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 / n , . . . — убывающая последовательность.

Последовательность, элементы которой с увеличением номера не убывают, или, наоборот, не возрастают, называется монотонной последовательностью .

Монотонными последовательностями, в частности, являются возрастающие последовательности и убывающие последовательности.

Арифметическая прогрессия

Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, к которому прибавляется одно и то же число.

a 1 , a 2 , a 3 , . . . , a n , . . .

является арифметической прогрессией, если для любого натурального числа n выполняется условие:

a n +1 = a n + d ,

где d — некоторое число.

Таким образом, разность между последующим и предыдущим членами данной арифметической прогрессии всегда постоянна:

а 2 - a 1 = а 3 - a 2 = . . . = a n +1 - a n = d .

Число d называют разностью арифметической прогрессии .

Чтобы задать арифметическую прогрессию, достаточно указать её первый член и разность.

Например,

если a 1 = 3, d = 4 , то первые пять членов последовательности находим следующим образом:

a 1 =3,

a 2 = a 1 + d = 3 + 4 = 7,

a 3 = a 2 + d = 7 + 4 = 11,

a 4 = a 3 + d = 11 + 4 = 15,

a 5 = a 4 + d = 15 + 4 = 19.

Для арифметической прогрессии с первым членом a 1 и разностью d её n

a n = a 1 + (n - 1)d.

Например,

найдём тридцатый член арифметической прогрессии

1, 4, 7, 10, . . .

a 1 =1, d = 3,

a 30 = a 1 + (30 - 1)d = 1 + 29· 3 = 88.

a n-1 = a 1 + (n - 2)d,

a n = a 1 + (n - 1)d,

a n +1 = a 1 + nd ,

то, очевидно,

a n =
a n-1 + a n+1
2

каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предшествующего и последующего членов.

числа a, b и c являются последовательными членами некоторой арифметической прогрессии тогда и только тогда, когда одно из них равно среднему арифметическому двух других.

Например,

a n = 2n - 7 , является арифметической прогрессией.

Воспользуемся приведённым выше утверждением. Имеем:

a n = 2n - 7,

a n-1 = 2(n - 1) - 7 = 2n - 9,

a n+1 = 2(n + 1) - 7 = 2n - 5.

Следовательно,

a n+1 + a n-1
=
2n - 5 + 2n - 9
= 2n - 7 = a n ,
2
2

Отметим, что n -й член арифметической прогрессии можно найти не толь через a 1 , но и любой предыдущий a k

a n = a k + (n - k )d .

Например,

для a 5 можно записать

a 5 = a 1 + 4d ,

a 5 = a 2 + 3d ,

a 5 = a 3 + 2d ,

a 5 = a 4 + d .

a n = a n-k + kd ,

a n = a n+k - kd ,

то, очевидно,

a n =
a n-k + a n+k
2

любой член арифметической прогрессии, начиная со второго равен полусумме равноотстоящих от него членов этой арифметической прогрессии.

Кроме того, для любой арифметической прогрессии справедливо равенство:

a m + a n = a k + a l ,

m + n = k + l.

Например,

в арифметической прогрессии

1) a 10 = 28 = (25 + 31)/2 = (a 9 + a 11 )/2;

2) 28 = a 10 = a 3 + 7d = 7 + 7·3 = 7 + 21 = 28;

3) a 10 = 28 = (19 + 37)/2 = (a 7 + a 13 )/2;

4) a 2 + a 12 = a 5 + a 9 , так как

a 2 + a 12 = 4 + 34 = 38,

a 5 + a 9 = 13 + 25 = 38.

S n = a 1 + a 2 + a 3 + . . . + a n ,

первых n членов арифметической прогрессии равна произведению полусуммы крайних слагаемых на число слагаемых:

Отсюда, в частности, следует, что если нужно просуммировать члены

a k , a k +1 , . . . , a n ,

то предыдущая формула сохраняет свою структуру:

Например,

в арифметической прогрессии 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

Если дана арифметическая прогрессия, то величины a 1 , a n , d , n и S n связаны двумя формулами:

Поэтому, если значения трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.

Арифметическая прогрессия является монотонной последовательностью. При этом:

  • если d > 0 , то она является возрастающей;
  • если d < 0 , то она является убывающей;
  • если d = 0 , то последовательность будет стационарной.

Геометрическая прогрессия

Геометрической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и то же число.

b 1 , b 2 , b 3 , . . . , b n , . . .

является геометрической прогрессией, если для любого натурального числа n выполняется условие:

b n +1 = b n · q ,

где q ≠ 0 — некоторое число.

Таким образом, отношение последующего члена данной геометрической прогрессии к предыдущему есть число постоянное:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = q .

Число q называют знаменателем геометрической прогрессии .

Чтобы задать геометрическую прогрессию, достаточно указать её первый член и знаменатель.

Например,

если b 1 = 1, q = -3 , то первые пять членов последовательности находим следующим образом:

b 1 = 1,

b 2 = b 1 · q = 1 · (-3) = -3,

b 3 = b 2 · q = -3 · (-3) = 9,

b 4 = b 3 · q = 9 · (-3) = -27,

b 5 = b 4 · q = -27 · (-3) = 81.

b 1 и знаменателем q её n -й член может быть найден по формуле:

b n = b 1 · q n -1 .

Например,

найдём седьмой член геометрической прогрессии 1, 2, 4, . . .

b 1 = 1, q = 2,

b 7 = b 1 · q 6 = 1 · 2 6 = 64 .

b n-1 = b 1 · q n -2 ,

b n = b 1 · q n -1 ,

b n +1 = b 1 · q n ,

то, очевидно,

b n 2 = b n -1 · b n +1 ,

каждый член геометрической прогрессии, начиная со второго, равен среднему геометрическому (пропорциональному) предшествующего и последующего членов.

Так как верно и обратное утверждение, то имеет место следующее утверждение:

числа a, b и c являются последовательными членами некоторой геометрической прогрессии тогда и только тогда, когда квадрат одного из них равен произведению двух других, то есть одно из чисел является средним геометрическим двух других.

Например,

докажем, что последовательность, которая задаётся формулой b n = -3 · 2 n , является геометрической прогрессией. Воспользуемся приведённым выше утверждением. Имеем:

b n = -3 · 2 n ,

b n -1 = -3 · 2 n -1 ,

b n +1 = -3 · 2 n +1 .

Следовательно,

b n 2 = (-3 · 2 n ) 2 = (-3 · 2 n -1 ) · (-3 · 2 n +1 ) = b n -1 · b n +1 ,

что и доказывает нужное утверждение.

Отметим, что n -й член геометрической прогрессии можно найти не только через b 1 , но и любой предыдущий член b k , для чего достаточно воспользоваться формулой

b n = b k · q n - k .

Например,

для b 5 можно записать

b 5 = b 1 · q 4 ,

b 5 = b 2 · q 3 ,

b 5 = b 3 · q 2 ,

b 5 = b 4 · q .

b n = b k · q n - k ,

b n = b n - k · q k ,

то, очевидно,

b n 2 = b n - k · b n + k

квадрат любого члена геометрической прогрессии, начиная со второго равен произведению равноотстоящих от него членов этой прогрессии.

Кроме того, для любой геометрической прогрессии справедливо равенство:

b m · b n = b k · b l ,

m + n = k + l .

Например,

в геометрической прогрессии

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · q 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , так как

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n = b 1 + b 2 + b 3 + . . . + b n

первых n членов геометрической прогрессии со знаменателем q 0 вычисляется по формуле:

А при q = 1 — по формуле

S n = nb 1

Заметим, что если нужно просуммировать члены

b k , b k +1 , . . . , b n ,

то используется формула:

S n - S k -1 = b k + b k +1 + . . . + b n = b k · 1 - q n - k +1
.
1 - q

Например,

в геометрической прогрессии 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

Если дана геометрическая прогрессия, то величины b 1 , b n , q , n и S n связаны двумя формулами:

Поэтому, если значения каких-либо трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.

Для геометрической прогрессии с первым членом b 1 и знаменателем q имеют место следующие свойства монотонности :

  • прогрессия является возрастающей, если выполнено одно из следующих условий:

b 1 > 0 и q > 1;

b 1 < 0 и 0 < q < 1;

  • прогрессия является убывающей, если выполнено одно из следующих условий:

b 1 > 0 и 0 < q < 1;

b 1 < 0 и q > 1.

Если q < 0 , то геометрическая прогрессия является знакопеременной: её члены с нечётными номерами имеют тот же знак, что и её первый член, а члены с чётными номерами — противоположный ему знак. Ясно, что знакопеременная геометрическая прогрессия не является монотонной.

Произведение первых n членов геометрической прогрессии можно рассчитать по формуле:

P n = b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n ) n / 2 .

Например,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Бесконечно убывающая геометрическая прогрессия

Бесконечно убывающей геометрической прогрессией называют бесконечную геометрическую прогрессию, модуль знаменателя которой меньше 1 , то есть

|q | < 1 .

Заметим, что бесконечно убывающая геометрическая прогрессия может не быть убывающей последовательностью. Это соответствует случаю

1 < q < 0 .

При таком знаменателе последовательность знакопеременная. Например,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

Суммой бесконечно убывающей геометрической прогрессии называют число, к которому неограниченно приближается сумма первых n членов прогрессии при неограниченном возрастании числа n . Это число всегда конечно и выражается формулой

S = b 1 + b 2 + b 3 + . . . = b 1
.
1 - q

Например,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Связь арифметической и геометрической прогрессий

Арифметическая и геометрическая прогрессии тесно связаны между собой. Рассмотрим лишь два примера.

a 1 , a 2 , a 3 , . . . d , то

b a 1 , b a 2 , b a 3 , . . . b d .

Например,

1, 3, 5, . . . — арифметическая прогрессия с разностью 2 и

7 1 , 7 3 , 7 5 , . . . — геометрическая прогрессия с знаменателем 7 2 .

b 1 , b 2 , b 3 , . . . — геометрическая прогрессия с знаменателем q , то

log a b 1 , log a b 2 , log a b 3 , . . . — арифметическая прогрессия с разностью log a q .

Например,

2, 12, 72, . . . — геометрическая прогрессия с знаменателем 6 и

lg 2, lg 12, lg 72, . . . — арифметическая прогрессия с разностью lg 6 .

Прежде чем мы начнем решать задачи на арифметическую прогрессию , рассмотрим, что такое числовая последовательность, поскольку арифметическая прогрессия - это частный случай числовой последовательности.

Числовая последовательность - это числовое множество, каждый элемент которого имеет свой порядковый номер . Элементы этого множества называются членами последовательности. Порядковый номер элемента последовательности обозначается индексом:

Первый элемент последовательности;

Пятый элемент последовательности;

- "энный" элемент последовательности, т.е. элемент, "стоящий в очереди" под номером n.

Между значением элемента последовательности и его порядковым номером существует зависимость. Следовательно, мы можем рассматривать последовательность как функцию, аргументом которой является порядковый номер элемента последовательности. Другими словами можно сказать, что последовательность - это функция от натурального аргумента:

Последовательность можно задать тремя способами:

1 . Последовательность можно задать с помощью таблицы. В этом случае мы просто задаем значение каждого члена последовательности.

Например, Некто решил заняться личным тайм-менеджментом, и для начала посчитать в течение недели, сколько времени он проводит ВКонтакте. Записывая время в таблицу, он получит последовательность, состоящую из семи элементов:

В первой строке таблицы указан номер дня недели, во второй - время в минутах. Мы видим, что , то есть в понедельник Некто провел ВКонтакте 125 минут, , то есть в четверг - 248 минут, а , то есть в пятницу всего 15.

2 . Последовательность можно задать с помощью формулы n-го члена.

В этом случае зависимость значения элемента последовательности от его номера выражается напрямую в виде формулы.

Например, если , то

Чтобы найти значение элемента последовательности с заданным номером, мы номер элемента подставляем в формулу n-го члена.

То же самое мы делаем, если нужно найти значение функции, если известно значение аргумента. Мы значение аргумента подставляем вместо в уравнение функции:

Если, например, , то

Ещё раз замечу, что в последовательности, в отличие от произвольной числовой функции, аргументом может быть только натуральное число.

3 . Последовательность можно задать с помощью формулы, выражающей зависимость значения члена последовательности с номером n от значения предыдущих членов. В этом случае нам недостаточно знать только номер члена последовательности, чтобы найти его значение. Нам нужно задать первый член или несколько первых членов последовательности.

Например, рассмотрим последовательность ,

Мы можем находить значения членов последовательности один за другим , начиная с третьего:

То есть каждый раз, чтобы найти значение n-го члена последовательности, мы возвращаемся к двум предыдущим. Такой способ задания последовательности называется рекуррентным , от латинского слова recurro - возвращаться.

Теперь мы можем дать определение арифметической прогрессии. Арифметическая прогрессия - это простой частный случай числовой последовательности.

Арифметической прогрессией называется числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же числом.


Число называется разностью арифметической прогрессии . Разность арифметической прогрессии может быть положительной, отрицательной, или равной нулю.

Если title="d>0">, то каждый член арифметической прогрессии больше предыдущего, и прогрессия является возрастающей .

Например, 2; 5; 8; 11;...

Если , то каждый член арифметической прогрессии меньше предыдущего, и прогрессия является убывающей .

Например, 2; -1; -4; -7;...

Если , то все члены прогрессии равны одному и тому же числу, и прогрессия является стационарной .

Например, 2;2;2;2;...

Основное свойство арифметической прогрессии:

Посмотрим на рисунок.

Мы видим, что

, и в то же время

Сложив эти два равенства, получим:

.

Разделим обе части равенства на 2:

Итак, каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому двух соседних:

Больше того, так как

, и в то же время

, то

, и, следовательно,

Каждый член арифметической прогрессии, начиная с title="k>l">, равен среднему арифметическому двух равноотстоящих.

Формула го члена.

Мы видим, что для членов арифметической прогрессии выполняются соотношения:

и, наконец,

Мы получили формулу n-го члена.

ВАЖНО! Любой член арифметической прогрессии можно выразить через и . Зная первый член и разность арифметической прогрессии можно найти любой её член.

Сумма n членов арифметической прогрессии.

В произвольной арифметический прогрессии суммы членов, равноотстоящих от крайних равны между собой:

Рассмотрим арифметическую прогрессию, в которой n членов. Пусть сумма n членов этой прогрессии равна .

Расположим члены прогрессии сначала в порядке возрастания номеров, а затем в порядке убывания:

Сложим попарно:

Сумма в каждой скобке равна , число пар равно n.

Получаем:

Итак, сумму n членов арифметической прогрессии можно найти по формулам:

Рассмотрим решение задач на арифметическую прогрессию .

1 . Последовательность задана формулой n-го члена: . Докажите, что эта последовательность является арифметической прогрессией.

Докажем, что разность между двумя соседними членами последовательности равна одному и тому же числу.

Мы получили, что разность двух соседних членов последовательности не зависит от их номера и является константой. Следовательно, по определению, эта последовательность является арифметической прогрессией.

2 . Дана арифметическая прогрессия -31; -27;...

а) Найдите 31 член прогрессии.

б) Определите, входит ли в данную прогрессию число 41.

а) Мы видим, что ;

Запишем формулу n-го члена для нашей прогрессии.

В общем случае

В нашем случае , поэтому

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Арифметическая прогрессия - это ряд чисел, в котором каждое число больше (или меньше) предыдущего на одну и ту же величину.

Эта тема частенько представляется сложной и непонятной. Индексы у буковок, n-й член прогрессии, разность прогрессии - всё это как-то смущает, да... Разберёмся со смыслом арифметической прогрессии и всё сразу наладится.)

Понятие арифметической прогрессии.

Арифметическая прогрессия - понятие очень простое и чёткое. Сомневаетесь? Зря.) Смотрите сами.

Я напишу незаконченный ряд чисел:

1, 2, 3, 4, 5, ...

Сможете продлить этот ряд? Какие числа пойдут дальше, за пятёркой? Каждый... э-э-э..., короче, каждый сообразит, что дальше пойдут числа 6, 7, 8, 9 и т.д.

Усложним задачу. Даю незаконченный ряд чисел:

2, 5, 8, 11, 14, ...

Сможете уловить закономерность, продлить ряд, и назвать седьмое число ряда?

Если сообразили, что это число 20 - я вас поздравляю! Вы не только почувствовали ключевые моменты арифметической прогрессии, но и успешно употребили их в дело! Если не сообразили - читаем дальше.

А теперь переведём ключевые моменты из ощущений в математику.)

Первый ключевой момент.

Арифметическая прогрессия имеет дело с рядами чисел. Это и смущает поначалу. Мы привыкли уравнения решать, графики строить и всё такое... А тут продлить ряд, найти число ряда...

Ничего страшного. Просто прогрессии - это первое знакомство с новым разделом математики. Раздел называется "Ряды" и работает именно с рядами чисел и выражений. Привыкайте.)

Второй ключевой момент.

В арифметической прогрессии любое число отличается от предыдущего на одну и ту же величину.

В первом примере эта разница - единичка. Какое число ни возьми, оно больше предыдущего на единичку. Во втором - тройка. Любое число больше предыдущего на тройку. Собственно, именно этот момент и даёт нам возможность уловить закономерность и рассчитать последующие числа.

Третий ключевой момент.

Этот момент не бросается в глаза, да... Но очень, очень важен. Вот он: каждое число прогрессии стоит на своём месте. Есть первое число, есть седьмое, есть сорок пятое, и т.д. Если их перепутать как попало, закономерность исчезнет. Исчезнет и арифметическая прогрессия. Останется просто ряд чисел.

Вот и вся суть.

Разумеется, в новой теме появляются новые термины и обозначения. Их надо знать. Иначе и задание-то не поймёшь. Например, придётся решать, что-нибудь, типа:

Выпишите первые шесть членов арифметической прогрессии (a n), если a 2 = 5, d = -2,5.

Внушает?) Буковки, индексы какие-то... А задание, между прочим - проще некуда. Просто нужно понять смысл терминов и обозначений. Сейчас мы это дело освоим и вернёмся к заданию.

Термины и обозначения.

Арифметическая прогрессия - это ряд чисел, в котором каждое число отличается от предыдущего на одну и ту же величину.

Эта величина называется . Разберёмся с этим понятием поподробнее.

Разность арифметической прогрессии.

Разность арифметической прогрессии - это величина, на которую любое число прогрессии больше предыдущего.

Один важный момент. Прошу обратить внимание на слово "больше". Математически это означает, что каждое число прогрессии получается прибавлением разности арифметической прогрессии к предыдущему числу.

Для расчёта, скажем, второго числа ряда, надо к первому числу прибавить эту самую разность арифметической прогрессии. Для расчёта пятого - разность надо прибавить к четвёртому, ну и т.п.

Разность арифметической прогрессии может быть положительной, тогда каждое число ряда получится реально больше предыдущего. Такая прогрессия называется возрастающей. Например:

8; 13; 18; 23; 28; .....

Здесь каждое число получается прибавлением положительного числа, +5 к предыдущему.

Разность может быть и отрицательной, тогда каждое число ряда получится меньше предыдущего. Такая прогрессия называется (вы не поверите!) убывающей.

Например:

8; 3; -2; -7; -12; .....

Здесь каждое число получается тоже прибавлением к предыдущему, но уже отрицательного числа, -5.

Кстати, при работе с прогрессией очень полезно бывает сразу определить её характер - возрастающая она, или убывающая. Это здорово помогает сориентироваться в решении, засечь свои ошибки и исправить их, пока не поздно.

Разность арифметической прогрессии обозначается, как правило, буквой d.

Как найти d ? Очень просто. Надо от любого числа ряда отнять предыдущее число. Вычесть. Кстати, результат вычитания называется "разность".)

Определим, например, d для возрастающей арифметической прогрессии:

2, 5, 8, 11, 14, ...

Берём любое число ряда, какое хотим, например, 11. Отнимаем от него предыдущее число, т.е. 8:

Это правильный ответ. Для этой арифметической прогрессии разность равна трём.

Брать можно именно любое число прогрессии, т.к. для конкретной прогрессии d - всегда одно и то же. Хоть где-нибудь в начале ряда, хоть в середине, хоть где угодно. Брать нельзя только самое первое число. Просто потому, что у самого первого числа нет предыдущего. )

Кстати, зная, что d = 3 , найти седьмое число этой прогрессии очень просто. Прибавим 3 к пятому числу - получим шестое, это будет 17. Прибавим к шестому числу тройку, получим седьмое число - двадцать.

Определим d для убывающей арифметической прогрессии:

8; 3; -2; -7; -12; .....

Напоминаю, что, независимо от знаков, для определения d надо от любого числа отнять предыдущее. Выбираем любое число прогрессии, например -7. Предыдущее у него - число -2. Тогда:

d = -7 - (-2) = -7 + 2 = -5

Разность арифметической прогрессии может быть любым числом: целым, дробным, иррациональным, всяким.

Другие термины и обозначения.

Каждое число ряда называется членом арифметической прогрессии.

Каждый член прогрессии имет свой номер. Номера идут строго по порядочку, безо всяких фокусов. Первый, второй, третий, четвёртый и т.д. Например, в прогрессии 2, 5, 8, 11, 14, ... двойка - это первый член, пятёрка - второй, одиннадцать - четвёртый, ну, вы поняли...) Прошу чётко осознать - сами числа могут быть совершенно любые, целые, дробные, отрицательные, какие попало, но нумерация чисел - строго по порядку!

Как записать прогрессию в общем виде? Не вопрос! Каждое число ряда записывается в виде буквы. Для обозначения арифметической прогрессии используется, как правило, буква a . Номер члена указывается индексом внизу справа. Члены пишем через запятую (или точку с запятой), вот так:

a 1 , a 2 , a 3 , a 4 , a 5 , .....

a 1 - это первое число, a 3 - третье, и т.п. Ничего хитрого. Записать этот ряд кратко можно вот так: (a n ).

Прогрессии бывают конечные и бесконечные.

Конечная прогрессия имеет ограниченное количество членов. Пять, тридцать восемь, сколько угодно. Но - конечное число.

Бесконечная прогрессия - имеет бесконечное количество членов, как можно догадаться.)

Записать конечную прогрессию через ряд можно вот так, все члены и точка в конце:

a 1 , a 2 , a 3 , a 4 , a 5 .

Или так, если членов много:

a 1 , a 2 , ... a 14 , a 15 .

В краткой записи придётся дополнительно указывать количество членов. Например (для двадцати членов), вот так:

(a n), n = 20

Бесконечную прогрессию можно узнать по многоточию в конце ряда, как в примерах этого урока.

Теперь уже можно порешать задания. Задания несложные, чисто для понимания смысла арифметической прогрессии.

Примеры заданий по арифметической прогрессии.

Разберём подробненько задание, что приведено выше:

1. Выпишите первые шесть членов арифметической прогрессии (a n), если a 2 = 5, d = -2,5.

Переводим задание на понятный язык. Дана бесконечная арифметическая прогрессия. Известен второе число этой прогрессии: a 2 = 5. Известна разность прогрессии: d = -2,5. Нужно найти первый, третий, четвёртый, пятый и шестой члены этой прогрессии.

Для наглядности запишу ряд по условию задачки. Первые шесть членов, где второй член - пятёрка:

a 1 , 5 , a 3 , a 4 , a 5 , a 6 ,....

a 3 = a 2 + d

Подставляем в выражение a 2 = 5 и d = -2,5 . Не забываем про минус!

a 3 =5+(-2,5)=5 - 2,5 = 2,5

Третий член получился меньше второго. Всё логично. Если число больше предыдущего на отрицательную величину, значит само число получится меньше предыдущего. Прогрессия - убывающая. Ладно, учтём.) Считаем четвёртый член нашего ряда:

a 4 = a 3 + d

a 4 =2,5+(-2,5)=2,5 - 2,5 = 0

a 5 = a 4 + d

a 5 =0+(-2,5)= - 2,5

a 6 = a 5 + d

a 6 =-2,5+(-2,5)=-2,5 - 2,5 = -5

Так, члены с третьего по шестой вычислили. Получился такой ряд:

a 1 , 5 , 2,5 , 0 , -2,5 , -5 , ....

Остаётся найти первый член a 1 по известному второму. Это шаг в другую сторону, влево.) Значит, разность арифметической прогрессии d надо не прибавить к a 2 , а отнять:

a 1 = a 2 - d

a 1 =5-(-2,5)=5 + 2,5=7,5

Вот и все дела. Ответ задания:

7,5, 5, 2,5, 0, -2,5, -5, ...

Попутно замечу, что это задание мы решали рекуррентным способом. Это страшное слово означает, всего лишь, поиск члена прогрессии по предыдущему (соседнему) числу. Другие способы работы с прогрессией мы рассмотрим далее.

Из этого несложного задания можно сделать один важный вывод.

Запоминаем:

Если нам известен хотя бы один член и разность арифметической прогрессии, мы можем найти любой член этой прогрессии.

Запомнили? Этот несложный вывод позволяет решать большинство задач школьного курса по этой теме. Все задачи крутятся вокруг трёх главных параметров: член арифметической прогрессии, разность прогрессии, номер члена прогрессии. Всё.

Разумеется, вся предыдущая алгебра не отменяется.) К прогрессии прицепляются и неравенства, и уравнения, и прочие вещи. Но по самой прогрессии - всё крутится вокруг трёх параметров.

Для примера рассмотрим некоторые популярные задания по этой теме.

2. Запишите конечную арифметическую прогрессию в виде ряда, если n=5, d = 0,4, и a 1 = 3,6.

Здесь всё просто. Всё уже дано. Нужно вспомнить, как считаются члены арифметической прогрессии, посчитать, да и записать. Желательно не пропустить слова в условии задания: "конечную" и "n=5 ". Чтобы не считать до полного посинения.) В этой прогрессии всего 5 (пять) членов:

a 2 = a 1 + d = 3,6 + 0,4 = 4

a 3 = a 2 + d = 4 + 0,4 = 4,4

a 4 = a 3 + d = 4,4 + 0,4 = 4,8

a 5 = a 4 + d = 4,8 + 0,4 = 5,2

Остаётся записать ответ:

3,6; 4; 4,4; 4,8; 5,2.

Ещё задание:

3. Определите, будет ли число 7 членом арифметической прогрессии (a n), если a 1 = 4,1; d = 1,2.

Хм... Кто ж его знает? Как определить-то?

Как-как... Да записать прогрессию в виде ряда и посмотреть, будет там семёрка, или нет! Считаем:

a 2 = a 1 + d = 4,1 + 1,2 = 5,3

a 3 = a 2 + d = 5,3 + 1,2 = 6,5

a 4 = a 3 + d = 6,5 + 1,2 = 7,7

4,1; 5,3; 6,5; 7,7; ...

Сейчас чётко видно, что семёрку мы просто проскочили между 6,5 и 7,7! Не попала семёрка в наш ряд чисел, и, значит, семёрка не будет членом заданной прогрессии.

Ответ: нет.

А вот задачка на основе реального варианта ГИА:

4. Выписано несколько последовательных членов арифметической прогрессии:

...; 15; х; 9; 6; ...

Здесь записан ряд без конца и начала. Нет ни номеров членов, ни разности d . Ничего страшного. Для решения задания достаточно понимать смысл арифметической прогрессии. Смотрим и соображаем, что можно узнать из этого ряда? Какие параметры из трёх главных?

Номера членов? Нет тут ни единого номера.

Зато есть три числа и - внимание! - слово "последовательных" в условии. Это значит, что числа идут строго по порядку, без пропусков. А есть ли в этом ряду два соседних известных числа? Да, есть! Это 9 и 6. Стало быть, мы можем вычислить разность арифметической прогрессии! От шестёрки отнимаем предыдущее число, т.е. девятку:

Остались сущие пустяки. Какое число будет предыдущим для икса? Пятнадцать. Значит, икс можно легко найти простым сложением. К 15 прибавить разность арифметической прогрессии:

Вот и всё. Ответ: х=12

Следующие задачки решаем самостоятельно. Замечание: эти задачки - не на формулы. Чисто на понимание смысла арифметической прогрессии.) Просто записываем ряд с числами-буквами, смотрим и соображаем.

5. Найдите первый положительный член арифметической прогрессии, если a 5 = -3; d = 1,1.

6. Известно, что число 5,5 является членом арифметической прогрессии (a n), где a 1 = 1,6; d = 1,3. Определите номер n этого члена.

7. Известно, что в арифметической прогрессии a 2 = 4; a 5 = 15,1. Найдите a 3 .

8. Выписано несколько последовательных членов арифметической прогрессии:

...; 15,6; х; 3,4; ...

Найдите член прогрессии, обозначенный буквой х.

9. Поезд начал движение от станции, равномерно увеличивая скорость на 30 метров в минуту. Какова будет скорость поезда через пять минут? Ответ дайте в км/час.

10. Известно, что в арифметической прогрессии a 2 = 5; a 6 = -5. Найдите a 1 .

Ответы (в беспорядке): 7,7; 7,5; 9,5; 9; 0,3; 4.

Всё получилось? Замечательно! Можно осваивать арифметическую прогрессию на более высоком уровне, в следующих уроках.

Не всё получилось? Не беда. В Особом разделе 555 все эти задачки разобраны по косточкам.) И, конечно, описан простой практический приём, который сразу высвечивает решение подобных заданий чётко, ясно, как на ладони!

Кстати, в задачке про поезд есть две проблемки, на которых часто спотыкается народ. Одна - чисто по прогрессии, а вторая - общая для любых задач по математике, да и физике тоже. Это перевод размерностей из одной в другую. В показано, как надо эти проблемы решать.

В этом уроке мы рассмотрели элементарный смысл арифметической прогрессии и её основные параметры. Этого достаточно для решения практически всех задач на эту тему. Прибавляй d к числам, пиши ряд, всё и решится.

Решение "на пальцах" хорошо подходит для очень коротких кусочков ряда, как в примерах этого урока. Если ряд подлиннее, вычисления усложняются. Например, если в задачке 9 в вопросе заменить "пять минут" на "тридцать пять минут", задачка станет существенно злее.)

А ещё бывают задания простые по сути, но несусветные по вычислениям, например:

Дана арифметическая прогрессия (a n). Найти a 121 , если a 1 =3, а d=1/6.

И что, будем много-много раз прибавлять по 1/6?! Это же убиться можно!?

Можно.) Если не знать простую формулу, по которой решать подобные задания можно за минуту. Эта формула будет в следующем уроке. И задачка эта там решена. За минуту.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Кто-то к слову «прогрессия» относится настороженно, как к очень сложному термину из разделов высшей математики. А между тем самая простая арифметическая прогрессия - работа счётчика такси (где они ещё остались). И понять суть (а в математике нет ничего важнее, чем «понять суть») арифметической последовательности не так сложно, разобрав несколько элементарных понятий.

Математическая числовая последовательность

Числовой последовательностью принято именовать какой-либо ряд чисел, каждое из которых имеет свой номер.

а 1 - первый член последовательности;

а 2 - второй член последовательности;

а 7 - седьмой член последовательности;

а n - n-ный член последовательности;

Однако не любой произвольный набор цифр и чисел интересует нас. Наше внимание сосредоточим на числовой последовательности, у которой значение n-ного члена связано с его порядковым номером зависимостью, которую можно чётко сформулировать математически. Иными словами: численное значение n-ного номера является какой-либо функцией от n.

a - значение члена числовой последовательности;

n - его порядковый номер;

f(n) - функция, где порядковый номер в числовой последовательности n является аргументом.

Определение

Арифметической прогрессией принято именовать числовую последовательность, в которой каждый последующий член больше (меньше) предыдущего на одно и то же число. Формула n-ного члена арифметической последовательности выглядит следующим образом:

a n - значение текущего члена арифметической прогрессии;

a n+1 - формула следующего числа;

d - разность (определённое число).

Нетрудно определить, что если разность положительна (d>0), то каждый последующий член рассматриваемого ряда будет больше предыдущего и такая арифметическая прогрессия будет возрастающей.

На представленном ниже графике нетрудно проследить, почему числовая последовательность получила название «возрастающая».

В случаях, когда разность отрицательная (d<0), каждый последующий член по понятным причинам будет меньше предыдущего, график прогрессии станет «уходить» вниз, арифметическая прогрессия, соответственно, будет именоваться убывающей.

Значение заданного члена

Иногда бывает необходимо определить значение какого-либо произвольного члена a n арифметической прогрессии. Можно сделать это путём расчёта последовательно значений всех членов арифметической прогрессии, начиная с первого до искомого. Однако такой путь не всегда приемлем, если, например, необходимо отыскать значение пятитысячного или восьмимиллионного члена. Традиционный расчёт сильно затянется по времени. Однако конкретная арифметическая прогрессия может быть исследована с помощью определённых формул. Существует и формула n-ного члена: значение любого члена арифметической прогрессии может быть определено как сумма первого члена прогрессии с разностью прогрессии, умноженной на номер искомого члена, уменьшенный на единицу.

Формула универсальна для возрастающей и убывающей прогрессии.

Пример расчёта значения заданного члена

Решим следующую задачу на нахождение значения n-ного члена арифметической прогрессии.

Условие: имеется арифметическая прогрессия с параметрами:

Первый член последовательности равен 3;

Разность числового ряда равняется 1,2.

Задание: необходимо отыскать значение 214 члена

Решение: для определения значения заданного члена воспользуемся формулой:

а(n) = а1 + d(n-1)

Подставив в выражение данные из условия задачи имеем:

а(214) = а1 + d(n-1)

а(214) = 3 + 1,2 (214-1) = 258,6

Ответ: 214-ый член последовательности раве 258,6.

Преимущества такого способа расчёта очевидны - всё решение занимает не более 2 строчек.

Сумма заданного числа членов

Очень часто в заданном арифметическом ряду требуется определить сумму значений некоторого его отрезка. Для этого также нет необходимости вычислять значения каждого члена и затем суммировать. Такой способ применим, если число членов, сумму которых необходимо найти, невелико. В остальных случаях удобнее воспользоваться следующей формулой.

Сумма членов арифметической прогрессии от 1 до n равна сумме первого и n-ного членов, помноженной на номер члена n и делённой надвое. Если в формуле значение n-ного члена заменить на выражение из предыдущего пункта статьи, получим:

Пример расчёта

Для примера решим задачу со следующими условиями:

Первый член последовательности равен нулю;

Разность равняется 0,5.

В задаче требуется определить сумму членов ряда с 56-го по 101.

Решение. Воспользуемся формулой определения суммы прогрессии:

s(n) = (2∙a1 + d∙(n-1))∙n/2

Вначале определим сумму значений 101 члена прогрессии, подставив в формулу данные их условия нашей задачи:

s 101 = (2∙0 + 0,5∙(101-1))∙101/2 = 2 525

Очевидно, для того, чтобы узнать сумму членов прогрессии с 56-го по 101-й, необходимо от S 101 отнять S 55 .

s 55 = (2∙0 + 0,5∙(55-1))∙55/2 = 742,5

Таким образом сумма арифметической прогрессии для данного примера:

s 101 - s 55 = 2 525 - 742,5 = 1 782,5

Пример практического применения арифметической прогрессии

В конце статьи вернёмся к примеру арифметической последовательности, приведённому в первом абзаце - таксометр (счётчик автомобиля такси). Рассмотрим такой пример.

Посадка в такси (в которую входит 3 км пробега) стоит 50 рублей. Каждый последующий километр оплачивается из расчёта 22 руб./км. Расстояние поездки 30 км. Рассчитать стоимость поездки.

1. Отбросим первые 3 км, цена которых включена в стоимость посадки.

30 - 3 = 27 км.

2. Дальнейший расчет - не что иное как разбор арифметического числового ряда.

Номер члена - число км пробега (минус первые три).

Значение члена - сумма.

Первый член в данной задаче будет равен a 1 = 50 р.

Разность прогрессии d = 22 р.

интересующее нас число - значение (27+1)-ого члена арифметической прогрессии - показания счётчика в конце 27-го километра - 27,999… = 28 км.

a 28 = 50 + 22 ∙ (28 - 1) = 644

На формулах, описывающих те или иные числовые последовательности, построены расчёты календарных данных на сколь угодно длительный период. В астрономии в геометрической зависимости от расстояния небесного тела до светила находится длина орбиты. Кроме того, различные числовые ряды с успехом применяются в статистике и других прикладных разделах математики.

Другой вид числовой последовательности - геометрическая

Геометрическая прогрессия характеризуется большими, по сравнению с арифметической, темпами изменения. Не случайно в политике, социологии, медицине зачастую, чтобы показать большую скорость распространения того или иного явления, например заболевания при эпидемии, говорят, что процесс развивается в геометрической прогрессии.

N-ный член геометрического числового ряда отличается от предыдущего тем, что он умножается на какое-либо постоянное число - знаменатель, например первый член равен 1, знаменатель соответственно равен 2, тогда:

n=1: 1 ∙ 2 = 2

n=2: 2 ∙ 2 = 4

n=3: 4 ∙ 2 = 8

n=4: 8 ∙ 2 = 16

n=5: 16 ∙ 2 = 32,

b n - значение текущего члена геометрической прогрессии;

b n+1 - формула следующего члена геометрической прогрессии;

q - знаменатель геометрической прогрессии (постоянное число).

Если график арифметической прогрессии представляет собой прямую, то геометрическая рисует несколько иную картину:

Как и в случае с арифметической, геометрическая прогрессия имеет формулу значения произвольного члена. Какой-либо n-ный член геометрической прогрессии равен произведению первого члена на знаменатель прогрессии в степени n уменьшенного на единицу:

Пример. Имеем геометрическую прогрессию с первым членом равным 3 и знаменателем прогрессии, равным 1,5. Найдём 5-й член прогрессии

b 5 = b 1 ∙ q (5-1) = 3 ∙ 1,5 4 = 15,1875

Сумма заданного числа членов рассчитывается так же с помощью специальной формулы. Сумма n первых членов геометрической прогрессии равна разности произведения n- ного члена прогрессии на его знаменатель и первого члена прогрессии, делённой на уменьшенный на единицу знаменатель:

Если b n заменить пользуясь рассмотренной выше формулой, значение суммы n первых членов рассматриваемого числового ряда примет вид:

Пример. Геометрическая прогрессия начинается с первого члена, равного 1. Знаменатель задан равным 3. Найдём сумму первых восьми членов.

s8 = 1 ∙ (3 8 -1) / (3-1) = 3 280



Рассказать друзьям