Численные ряды. Признаки сходимости числовых рядов

💖 Нравится? Поделись с друзьями ссылкой

Вычислить сумму ряда можно только в случае, когда ряд сходится. Если ряд расходится то сумма ряда бесконечна и нет смысла что-то вычислять. Ниже приведены примеры из практики нахождения суммы ряда, которые задавали в Львовском национальном университете имени Ивана Франка. Задания на ряды подобраны так, что условие сходимости выполняется всегда, однако проверку на сходимость мы выполнять будем. Эта и следующие за ней статьи составляют решение контрольной работы по анализе рядов.

Пример 1.4 Вычислить сумму рядов:
а)
Вычисления: Поскольку граница общего члена ряда при номере следующему до бесконечности равна 0

то данный ряд сходится. Вычислим сумму ряда. Для этого преобразуем общий член, разложив его на простейшие дроби I и II типа. Методика разложения на простые дроби здесь приводиться не будет (хорошо расписана при интегрировании дробей), а лишь запишем конечный вид разложения

В соответствии с этим можем сумму расписать через сумму ряда образованного из простейших дробей, а дальше из разницы сумм рядов

Далее расписываем каждый ряд в явную сумму и выделяем слагаемые (подчеркивание), которые превратятся 0 после сложения. Таким образом сумма ряда упростится к сумме 3 слагаемых (обозначены черным), что в результате даст 33/40.

На этом базируется вся практическая часть нахождения суммы для простых рядов.
Примеры на сложные ряды сводятся к сумме бесконечно убывающих прогрессий и рядов, которые находят через соответствующие формулы, но здесь такие примеры рассматривать не будем.
б)
Вычисления: Находим границу n-го члена суммы

Она равна нулю, следовательно заданный ряд сходится и имеет смысл искать его сумму. Если граница отличная от нуля, то сумма ряда равна бесконечности со знаком "плюс" или "минус".
Найдем сумму ряда. Для этого общий член ряда который является дробью превратим методом неопределенных коэффициентов к сумме простых дробей I типа

Далее по инструкции которая приводилась ранее записываем сумму ряда через соответствующие суммы простейших дробей

Расписываем суммы и выделяем слагаемые, которые станут равными 0 при суммировании.

В результате получим сумму нескольких слагаемых (выделенные черным) которая равна 17/6 .

Пример 1.9 Найти сумму ряда:
а)
Вычисления: Вычислениям границы

убеждаемся что данный ряд сходится и можно находить сумму. Далее знаменатель функции от номера n раскладываем на простые множители, а весь дробь превращаем к сумме простых дробей I типа

Далее сумму ряда в соответствии с расписанием записываем через два простые

Ряды записываем в явном виде и выделяем слагаемые, которые после добавления дадут в сумме ноль. Остальные слагаемые (выделенные черным) и представляет собой конечную сумму ряда

Таким образом, чтобы найти сумму ряда надо на практике свести под общий знаменатель 3 простых дроби.
б)
Вычисления: Граница члена ряда при больших значениях номера стремится к нулю

Из этого следует что ряд сходится, а его сумма конечна. Найдем сумму ряда, для этого сначала методом неопределенных коэффициентов разложим общий член ряда на три простейшего типа

Соответственно и сумму ряда можно превратить в сумму трех простых рядов

Далее ищем слагаемые во всех трех суммах, которые после суммирования превратятся в ноль. В рядах, содержащих три простых дроби один из них при суммировании становится равным нулю (выделен красным). Это служит своеобразной подсказкой в вычислениях

Сумма ряда равна сумме 3 слагаемых и равна единице.

Пример 1.15 Вычислить сумму ряда:
а)

Вычисления: При общем член ряда стремящемся к нулю

данный ряд сходится. Преобразуем общий член таким образом, чтобы иметь сумму простейших дробей

Далее заданный ряд, согласно формулам расписания, записываем через сумму двух рядов

После записи в явном виде большинство членов ряда в результате суммирования станут равны нулю. Останется вычислить сумму трех слагаемых.

Сумма числового ряда равна -1/30 .
б)
Вычисления: Поскольку граница общего члена ряда равна нулю,

то ряд сходится. Для нахождения суммы ряда разложим общий член на дроби простейшего типа.

При разложении использовали метод неопределенных коэффициентов. Записываем сумму ряда из найденного расписание

Следующим шагом выделяем слагаемые, не вносящие никакого вклада в конечную сумму и остальные оставшиеся

Сумма ряда равна 4,5 .

Пример 1.25 Вычислить сумму рядов:
а)


Поскольку она равна нулю то ряд сходится. Можем найти сумму ряда. Для этого по схеме предыдущих примеров раскладываем общий член ряда через простейшие дроби

Это позволяет записать ряд через сумму простых рядов и, выделив в нем слагаемые, упростив при этом суммирование.

В этом случае останется одно слагаемое которое равен единице.
б)
Вычисления: Находим границу общего члена ряда

и убеждаемся что ряд сходится. Далее общий член числового ряда методом неопределенных коэффициентов раскладываем на дроби простейшего типа.

Через такие же дроби расписываем сумму ряда

Записываем ряды в явном виде и упрощаем к сумме 3 слагаемых

Сумма ряда равна 1/4.
На этом ознакомление со схемами суммирования рядов завершено. Здесь еще не рассмотрены ряды, которые сводятся к сумме бесконечно убывающей геометрической прогрессии, содержащие факториалы, степенные зависимости и подобные. Однако и приведенный материал будет полезен для студентов на контрольных и тестах.

Ответ : ряд расходится.

Пример №3

Найти сумму ряда $\sum\limits_{n=1}^{\infty}\frac{2}{(2n+1)(2n+3)}$.

Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=\frac{2}{(2n+1)(2n+3)}$. Составим n-ю частичную сумму ряда, т.е. просуммируем первые $n$ членов заданного числового ряда:

$$ S_n=u_1+u_2+u_3+u_4+\ldots+u_n=\frac{2}{3\cdot 5}+\frac{2}{5\cdot 7}+\frac{2}{7\cdot 9}+\frac{2}{9\cdot 11}+\ldots+\frac{2}{(2n+1)(2n+3)}. $$

Почему я пишу именно $\frac{2}{3\cdot 5}$, а не $\frac{2}{15}$, будет ясно из дальнейшего повествования. Однако запись частичной суммы ни на йоту не приблизила нас к цели. Нам ведь нужно найти $\lim_{n\to\infty}S_n$, но если мы просто запишем:

$$ \lim_{n\to\infty}S_n=\lim_{n\to\infty}\left(\frac{2}{3\cdot 5}+\frac{2}{5\cdot 7}+\frac{2}{7\cdot 9}+\frac{2}{9\cdot 11}+\ldots+\frac{2}{(2n+1)(2n+3)}\right), $$

то эта запись, совершенно верная по форме, ничего нам не даст по сути. Чтобы найти предел, выражение частичной суммы предварительно нужно упростить.

Для этого есть стандартное преобразование, состоящее в разложении дроби $\frac{2}{(2n+1)(2n+3)}$, которая представляет общий член ряда, на элементарные дроби. Вопросу разложения рациональных дробей на элементарные посвящена отдельная тема (см., например, пример №3 на этой странице). Раскладывая дробь $\frac{2}{(2n+1)(2n+3)}$ на элементарные дроби, будем иметь:

$$ \frac{2}{(2n+1)(2n+3)}=\frac{A}{2n+1}+\frac{B}{2n+3}=\frac{A\cdot(2n+3)+B\cdot(2n+1)}{(2n+1)(2n+3)}. $$

Приравниваем числители дробей в левой и правой частях полученного равенства:

$$ 2=A\cdot(2n+3)+B\cdot(2n+1). $$

Чтобы найти значения $A$ и $B$ есть два пути. Можно раскрыть скобки и перегруппировать слагаемые, а можно просто подставить вместо $n$ некие подходящие значения. Сугубо для разнообразия в этом примере пойдём первым путём, а следующем - будем подставлять частные значения $n$. Раскрывая скобки и перегруппировывая слагаемые, получим:

$$ 2=2An+3A+2Bn+B;\\ 2=(2A+2B)n+3A+B. $$

В левой части равенства перед $n$ стоит ноль. Если угодно, левую часть равенства для наглядности можно представить как $0\cdot n+ 2$. Так как в левой части равенства перед $n$ стоит ноль, а в правой части равества перед $n$ стоит $2A+2B$, то имеем первое уравнение: $2A+2B=0$. Сразу разделим обе части этого уравнения на 2, получив после этого $A+B=0$.

Так как в левой части равенства свободный член равен 2, а в правой части равенства свободный член равен $3A+B$, то $3A+B=2$. Итак, имеем систему:

$$ \left\{\begin{aligned} & A+B=0;\\ & 3A+B=2. \end{aligned}\right. $$

Доказательство будем проводить методом математической индукции. На первом шаге нужно проверить, выполнено ли доказываемое равенство $S_n=\frac{1}{3}-\frac{1}{2n+3}$ при $n=1$. Мы знаем, что $S_1=u_1=\frac{2}{15}$, но даст ли выражение $\frac{1}{3}-\frac{1}{2n+3}$ значение $\frac{2}{15}$, если подставить в него $n=1$? Проверим:

$$ \frac{1}{3}-\frac{1}{2n+3}=\frac{1}{3}-\frac{1}{2\cdot 1+3}=\frac{1}{3}-\frac{1}{5}=\frac{5-3}{15}=\frac{2}{15}. $$

Итак, при $n=1$ равенство $S_n=\frac{1}{3}-\frac{1}{2n+3}$ выполнено. На этом первый шаг метода математической индукции закончен.

Предположим, что при $n=k$ равенство выполнено, т.е. $S_k=\frac{1}{3}-\frac{1}{2k+3}$. Докажем, что это же равенство будет выполнено при $n=k+1$. Для этого рассмотрим $S_{k+1}$:

$$ S_{k+1}=S_k+u_{k+1}. $$

Так как $u_n=\frac{1}{2n+1}-\frac{1}{2n+3}$, то $u_{k+1}=\frac{1}{2(k+1)+1}-\frac{1}{2(k+1)+3}=\frac{1}{2k+3}-\frac{1}{2(k+1)+3}$. Согласно сделанному выше предположению $S_k=\frac{1}{3}-\frac{1}{2k+3}$, поэтому формула $S_{k+1}=S_k+u_{k+1}$ примет вид:

$$ S_{k+1}=S_k+u_{k+1}=\frac{1}{3}-\frac{1}{2k+3}+\frac{1}{2k+3}-\frac{1}{2(k+1)+3}=\frac{1}{3}-\frac{1}{2(k+1)+3}. $$

Вывод: формула $S_n=\frac{1}{3}-\frac{1}{2n+3}$ верна при $n=k+1$. Следовательно, согласно методу математической индукции, формула $S_n=\frac{1}{3}-\frac{1}{2n+3}$ верна при любом $n\in N$. Равенство доказано.

В стандартном курсе высшей математики обычно довольствуются "вычёркиванием" сокращающихся слагаемых, не требуя никаких доказательств. Итак, мы получили выражение для n-й частичной суммы: $S_n=\frac{1}{3}-\frac{1}{2n+3}$. Найдём значение $\lim_{n\to\infty}S_n$:

Вывод: заданный ряд сходится и сумма его $S=\frac{1}{3}$.

Второй способ упрощения формулы для частичной суммы.

Честно говоря, я сам предпочитаю именно этот способ:) Давайте запишем частичную сумму в сокращённом варианте:

$$ S_n=\sum\limits_{k=1}^{n}u_k=\sum\limits_{k=1}^{n}\frac{2}{(2k+1)(2k+3)}. $$

Мы получили ранее, что $u_k=\frac{1}{2k+1}-\frac{1}{2k+3}$, поэтому:

$$ S_n=\sum\limits_{k=1}^{n}\frac{2}{(2k+1)(2k+3)}=\sum\limits_{k=1}^{n}\left(\frac{1}{2k+1}-\frac{1}{2k+3}\right). $$

Сумма $S_n$ содержит конечное количество слагаемых, поэтому мы можем переставлять их так, как нам заблагорассудится. Я хочу сначала сложить все слагаемые вида $\frac{1}{2k+1}$, а уж затем переходить к слагаемым вида $\frac{1}{2k+3}$. Это означает, что частичную сумму мы представим в таком виде:

$$ S_n =\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\ldots+\frac{1}{2n+1}-\frac{1}{2n+3}=\\ =\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\ldots+\frac{1}{2n+1}-\left(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\ldots+\frac{1}{2n+3}\right). $$

Конечно, развёрнутая запись крайне неудобна, поэтому представленное выше равенство можно оформить более компактно:

$$ S_n=\sum\limits_{k=1}^{n}\left(\frac{1}{2k+1}-\frac{1}{2k+3}\right)=\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=1}^{n}\frac{1}{2k+3}. $$

Теперь преобразуем выражения $\frac{1}{2k+1}$ и $\frac{1}{2k+3}$ к одному виду. Я полагаю удобным приводить к виду большей дроби (хотя можно и к меньшей, это дело вкуса). Так как $\frac{1}{2k+1}>\frac{1}{2k+3}$ (чем больше знаменатель, тем меньше дробь), то будем приводить дробь $\frac{1}{2k+3}$ к виду $\frac{1}{2k+1}$.

Выражение в знаменателе дроби $\frac{1}{2k+3}$ я представлю в таком виде:

$$ \frac{1}{2k+3}=\frac{1}{2k+2+1}=\frac{1}{2(k+1)+1}. $$

И сумму $\sum\limits_{k=1}^{n}\frac{1}{2k+3}$ теперь можно записать так:

$$ \sum\limits_{k=1}^{n}\frac{1}{2k+3}=\sum\limits_{k=1}^{n}\frac{1}{2(k+1)+1}=\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}. $$

Если равенство $\sum\limits_{k=1}^{n}\frac{1}{2k+3}=\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}$ не вызывает вопросов, то пойдём далее. Если же вопросы есть, то прошу развернуть примечание.

Как мы получили преобразованную сумму? показать\скрыть

У нас был ряд $\sum\limits_{k=1}^{n}\frac{1}{2k+3}=\sum\limits_{k=1}^{n}\frac{1}{2(k+1)+1}$. Давайте вместо $k+1$ введём новую переменную, - например, $t$. Итак, $t=k+1$.

Как изменялась старая переменная $k$? А изменялась она от 1 до $n$. Давайте выясним, как же будет изменяться новая переменная $t$. Если $k=1$, то $t=1+1=2$. Если же $k=n$, то $t=n+1$. Итак, выражение $\sum\limits_{k=1}^{n}\frac{1}{2(k+1)+1}$ теперь стало таким: $\sum\limits_{t=2}^{n+1}\frac{1}{2t+1}$.

$$ \sum\limits_{k=1}^{n}\frac{1}{2(k+1)+1}=\sum\limits_{t=2}^{n+1}\frac{1}{2t+1}. $$

У нас есть сумма $\sum\limits_{t=2}^{n+1}\frac{1}{2t+1}$. Вопрос: а не всё ли равно, какую букву использовать в этой сумме? :) Банально записывая букву $k$ вместо $t$, получим следующее:

$$ \sum\limits_{t=2}^{n+1}\frac{1}{2t+1}=\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}. $$

Вот так и получается равенство $\sum\limits_{k=1}^{n}\frac{1}{2(k+1)+1}=\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}$.

Таким образом, частичную сумму можно представить в следующем виде:

$$ S_n=\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=1}^{n}\frac{1}{2k+3}=\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}. $$

Заметьте, что суммы $\sum\limits_{k=1}^{n}\frac{1}{2k+1}$ и $\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}$ отличаются лишь пределами суммирования. Сделаем эти пределы одинаковыми. "Забирая" первый элемент из суммы $\sum\limits_{k=1}^{n}\frac{1}{2k+1}$ будем иметь:

$$ \sum\limits_{k=1}^{n}\frac{1}{2k+1}=\frac{1}{2\cdot 1+1}+\sum\limits_{k=2}^{n}\frac{1}{2k+1}=\frac{1}{3}+\sum\limits_{k=2}^{n}\frac{1}{2k+1}. $$

"Забирая" последний элемент из суммы $\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}$, получим:

$$\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}=\sum\limits_{k=2}^{n}\frac{1}{2k+1}+\frac{1}{2(n+1)+1}=\sum\limits_{k=2}^{n}\frac{1}{2k+1}+\frac{1}{2n+3}.$$

Тогда выражение для частичной суммы примет вид:

$$ S_n=\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}=\frac{1}{3}+\sum\limits_{k=2}^{n}\frac{1}{2k+1}-\left(\sum\limits_{k=2}^{n}\frac{1}{2k+1}+\frac{1}{2n+3}\right)=\\ =\frac{1}{3}+\sum\limits_{k=2}^{n}\frac{1}{2k+1}-\sum\limits_{k=2}^{n}\frac{1}{2k+1}-\frac{1}{2n+3}=\frac{1}{3}-\frac{1}{2n+3}. $$

Если пропустить все пояснения, то процесс нахождения сокращённой формулы для n-й частичной суммы примет такой вид:

$$ S_n=\sum\limits_{k=1}^{n}u_k =\sum\limits_{k=1}^{n}\frac{2}{(2k+1)(2k+3)} =\sum\limits_{k=1}^{n}\left(\frac{1}{2k+1}-\frac{1}{2k+3}\right)=\\ =\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=1}^{n}\frac{1}{2k+3} =\frac{1}{3}+\sum\limits_{k=2}^{n}\frac{1}{2k+1}-\left(\sum\limits_{k=2}^{n}\frac{1}{2k+1}+\frac{1}{2n+3}\right)=\frac{1}{3}-\frac{1}{2n+3}. $$

Напомню, что мы приводили дробь $\frac{1}{2k+3}$ к виду $\frac{1}{2k+1}$. Разумеется, можно поступить и наоборот, т.е. представить дробь $\frac{1}{2k+1}$ в виде $\frac{1}{2k+3}$. Конечное выражение для частичной суммы не изменится. Процесс нахождения частичной суммы в этом случае я скрою под примечание.

Как найти $S_n$, если приводить к виду иной дроби? показать\скрыть

$$ S_n =\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=1}^{n}\frac{1}{2k+3} =\sum\limits_{k=0}^{n-1}\frac{1}{2k+3}-\sum\limits_{k=1}^{n}\frac{1}{2k+3}=\\ =\frac{1}{3}+\sum\limits_{k=1}^{n-1}\frac{1}{2k+3}-\left(\sum\limits_{k=1}^{n-1}\frac{1}{2k+3}+\frac{1}{2n+3}\right) =\frac{1}{3}-\frac{1}{2n+3}. $$

Итак, $S_n=\frac{1}{3}-\frac{1}{2n+3}$. Находим предел $\lim_{n\to\infty}S_n$:

$$ \lim_{n\to\infty}S_n=\lim_{n\to\infty}\left(\frac{1}{3}-\frac{1}{2n+3}\right)=\frac{1}{3}-0=\frac{1}{3}. $$

Заданный ряд сходится и сумма его $S=\frac{1}{3}$.

Ответ : $S=\frac{1}{3}$.

Продолжение темы нахождения суммы ряда будет рассмотрено во второй и третьей частях.

Для того, чтобы вычислить сумму ряда , нужно просто сложить элементы ряда, заданное количество раз. Например:

В приведённом выше примере это удалось сделать очень просто, поскольку суммировать пришлось конечное число раз. Но что делать, если верхний предел суммирования бесконечность? Например, если нам нужно найти сумму вот такого ряда:

По аналогии с предыдущим примером, мы можем расписать эту сумму вот так:

Но что делать дальше?! На этом этапе необходимо ввести понятие частичной суммы ряда . Итак, частичной суммой ряда (обозначается S n ) называется сумма первых n слагаемых ряда. Т.е. в нашем случае:

Тогда сумму исходного ряда можно вычислить как предел частичной суммы:

Таким образом, для вычисления суммы ряда , необходимо каким-либо способом найти выражение для частичной суммы ряда (S n ). В нашем конкретном случае ряд представляет собой убывающую геометрическую прогрессию со знаменателем 1/3. Как известно сумма первых n элементов геометрической прогрессии вычисляется по формуле:

здесь b 1 - первый элемент геометрической прогрессии (в нашем случае это 1) и q - это знаменатель прогрессии (в нашем случае 1/3). Следовательно частичная сумма S n для нашего ряда равна:

Тогда сумма нашего ряда (S ) согласно определению, данному выше, равна:

Рассмотренные выше примеры являются достаточно простыми. Обычно вычислить сумму ряда гораздо сложнее и наибольшая трудность заключается именно в нахождении частичной суммы ряда. Представленный ниже онлайн калькулятор, созданный на основе системы Wolfram Alpha, позволяет вычислять сумму довольно сложных рядов. Более того, если калькулятор не смог найти сумму ряда, вероятно, что данный ряд является расходящимся (в этом случае калькулятор выводит сообщение типа "sum diverges"), т.е. данный калькулятор также косвенно помогает получить представление о сходимости рядов.

Для нахождения суммы Вашего ряда, необходимо указать переменную ряда, нижний и верхний пределы суммирования, а также выражение для n -ого слагаемого ряда (т.е. собственно выражение для самого ряда).

И т.д. – достаточно самых минимальных знаний о числовых рядах . Необходимо понимать, что такое ряд , уметь расписывать его подробно и не округлять глаза после словосочетаний «ряд сходится», «ряд расходится», «сумма ряда». Поэтому, если ваше настроение совсем на нуле, пожалуйста, уделите 5-10 минут статье Ряды для чайников (буквально первые 2-3 страницы), а потом возвращайтесь сюда и смело начинайте решать примеры!

Следует отметить, что в большинстве случаев найти сумму ряда непросто, и этот вопрос обычно решается через функциональные ряды (доживём-доживём:)) . Так, например, сумма популярного артиста выводится через ряды Фурье . В этой связи на практике почти всегда требуется установить сам факт сходимости , но не найти конкретное число (многие, думаю, уже успели это заметить). Однако среди великого множества числовых рядов есть немногочисленные представители, которые позволяют без особых проблем прикоснуться к святая святых даже полному чайнику. И на вводном уроке я приводил пример бесконечно убывающей геометрической прогрессии , сумма которой легко рассчитывается по известной школьной формуле.

В данной статье мы продолжим рассматривать похожие примеры, кроме того, узнаем строгое определение суммы и попутно познакомимся с некоторыми свойствами рядов. Разомнёмся… да прямо на прогрессиях и разомнёмся:

Пример 1

Найти сумму ряда

Решение : представим наш ряд в виде суммы двух рядов:

Почему в данном случае так можно сделать? Выполненные действия основаны на двух простейших утверждениях:

1) Если сходятся ряды , то будут сходиться и ряды, составленные из сумм или разностей соответствующих членов: . При этом существенно то обстоятельство, что речь идёт о сходящихся рядах. В нашём примере мы заранее знаем , что обе геометрические прогрессии сойдутся, а значит, без всяких сомнений раскладываем исходный ряд в два ряда.

2) Второе свойство ещё очевиднее. Константу можно вынести за пределы ряда: , и это не повлияет на его сходимость или расходимость и итоговую сумму. Зачем выносить константу? Да просто чтобы она «не мешалась под ногами». Но иногда бывает выгодно этого и не делать

Чистовое оформление примера выглядит примерно так:

Дважды используем формулу для нахождения суммы бесконечно убывающей геометрической прогрессии: , где – первый член прогрессии, – основание прогрессии.

Ответ : сумма ряда

Начало решения можно оформить несколько в другом стиле – расписать ряд напрямую и перегруппировать его члены:

Дальше по накатанной.

Пример 2

Найти сумму ряда

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Каких-либо особых изысков здесь нет, но однажды мне попался необычный ряд , который может застать врасплох неискушенного человека. Это… тоже бесконечно убывающая геометрическая прогрессия! Действительно, , и сумма рассчитывается буквально за пару мгновений: .

А сейчас живительный глоток математического анализа, необходимый для решения дальнейших задач:

Что такое сумма ряда?

Строгое определение сходимости/расходимости и суммы ряда в теории даётся через так называемые частичные суммы ряда. Частичные – значит неполные. Распишем частичные суммы числового ряда :

И особую роль играет частичная сумма «эн» членов ряда:

Если предел частичных сумм числового ряда равен конечному числу: , то такой ряд называют сходящимся , а само число – суммой ряда . Если же предел бесконечен либо его не существует, то ряд называют расходящимся .

Вернёмся к демонстрационному ряду и распишем его частичные суммы:

Предел частичных сумм – есть в точности бесконечно убывающая геометрическая прогрессия, сумма которой равна: . Похожий предел мы рассматривали на уроке о числовых последовательностях . Собственно, и сама формула – это прямое следствие вышеизложенных теоретических выкладок (см. 2-ой том матана).

Таким образом, прорисовывается общий алгоритм решения нашей задачи : необходимо составить энную частичную сумму ряда и найти предел . Посмотрим, как это осуществляется на практике:

Пример 3

Вычислить сумму ряда

Решение : на первом шаге нужно разложить общий член ряда в сумму дробей. Используем метод неопределённых коэффициентов :

В результате:

Сразу же полезно провести обратное действие, выполнив тем самым проверку:

Получен общий член ряда в исходном виде, следовательно, разложение в сумму дробей проведено успешно.

Теперь составим частичную сумму ряда . Вообще это делается устно, но один раз я максимально подробно распишу, что откуда взялось:

Как записать совершенно понятно, но чему равен предыдущий член ? В общий член ряда ВМЕСТО «эн» подставляем :

Почти все слагаемые частичной суммы благополучно сокращаются:


Прямо такие пометки и делаем карандашом в тетради. Чертовски удобно.

Осталось вычислить элементарный предел и узнать сумму ряда:

Ответ :

Аналогичный ряд для самостоятельного решения:

Пример 4

Вычислить сумму ряда

Примерный образец чистового оформления решения в конце урока.

Очевидно, что нахождение суммы ряда – это само по себе доказательство его сходимости (помимо признаков сравнения , Даламбера, Коши и др.), о чём, в частности, намекает формулировка следующего задания:

Пример 5

Найти сумму ряда или установить его расходимость

По внешнему виду общего члена можно сразу сказать, как ведёт себя этот товарищ. Без комплексов. С помощью предельного признака сравнения легко выяснить (причём даже устно), что данный ряд будет сходиться вместе с рядом . Но перед нами редкий случай, когда без особых хлопот рассчитывается ещё и сумма.

Решение : разложим знаменатель дроби в произведение. Для этого нужно решить квадратное уравнение :

Таким образом:

Множители лучше расположить в порядке возрастания: .

Выполним промежуточную проверку:

ОК

Таким образом, общий член ряда:

Таким образом:

Не ленимся:

Что и требовалось проверить.

Запишем частичную сумму «эн» членов ряда, при этом обращаем внимание на тот факт, что «счётчик» ряда «начинает работать» с номера . Как и в предыдущих примерах, надёжнее растянуть кобру на приличную длину:

Однако если мы запишем в одну-две строчки, то всё равно будет довольно трудно сориентироваться в сокращениях слагаемых (их таки 3 в каждом члене). И здесь нам на помощь придёт… геометрия. Заставим плясать змею под свою дудочку:

Да, прямо так и пишем в тетради один член под другим и прямо так их вычёркиваем. Кстати, собственное изобретение. Как понимаете, не от самого лёгкого задания в этой жизни =)

В результате всех сокращений получаем:

И, наконец, сумма ряда:

Ответ :

Пример 8

Вычислить сумму ряда

Это пример для самостоятельного решения.

Рассматриваемая задача, конечно, не радует нас разнообразием – на практике встречается либо бесконечно убывающая геометрическая прогрессия, либо ряд с дробно-рациональным общим членом и разложимым многочленом в знаменателе (к слову, далеко не каждый такой многочлен даёт возможность найти сумму ряда). Но, тем не менее, иногда попадаются необычные экземпляры, и по сложившейся доброй традиции я завершаю урок какой-нибудь любопытной задачей.

Числовые ряды. Сходимость и расходимость числовых рядов. Признак сходимости Даламбера. Знакопеременные ряды. Абсолютная и условная сходимость рядов. Функциональные ряды. Степенные ряды. Разложение элементарных функций в ряд Маклорена .

Методические указания по теме 1.4:

Числовые ряды:

Числовым рядом называется сумма вида

где числа u 1 , u 2 , u 3 , n n , называемые членами ряда, образуют бесконечную последовательность; член un называется общим членом ряда.

. . . . . . . . .

составленные из первых членов ряда (27.1), называются частными суммами этого ряда.

Каждому ряду можно сопоставить последовательность частичных сумм S 1 , S 2 , S 3 . Если при бесконечном возрастании номера n частичная сумма ряда S n стремится к пределу S , то ряд называется сходящимся, а число S - суммой сходящегося ряда, т.е.

Эта запись равносильна записи

Если частичная сумма S n ряда (27.1) при неограниченном возрастании n не имеет конченого предела (в частности, стремится к + ¥ или к - ¥), то такой ряд называется расходящимся

Если ряд сходится, то значение S n при достаточно большом n является приближенным выражением суммы ряда S .

Разность r n = S - S n называется остатком ряда. Если ряд сходится, то его остаток стремится к нулю, т.е. r n = 0, и наоборот, если остаток стремится к нулю, то ряд сходится.

Ряд вида называется геометрическим рядом.

называется гармоническим.

если N ®¥, то S n ®¥, т.е. гармонический ряд расходится.

Пример 1. Записать ряд по его заданному общему члену:

1) полагая n = 1, n = 2, n = 3, имеем бесконечную последовательность чисел: , , , Сложив ее члены, получим ряд

2) Поступая так же, получим ряд

3) Придавая n значения 1, 2, 3, и учитывая,что 1! = 1, 2! = 1 × 2, 3! = 1 × 2 × 3, получим ряд

Пример 2. Найти n -й член ряда по его данным первым числам:

1) ; 2) ; 3) .

Пример 3. Найти сумму членов ряда:

2) .

1) Находим частичные суммы членов ряда:

; ;

… .

Запишем последовательность частичных сумм: …, , … .

Общий член этой последовательности есть . Следовательно,

.

Последовательность частичных сумм имеет предел, равный . Итак, ряд сходится и его сумма равна .

2) Это бесконечно убывающая геометрическая прогрессия, в которой a 1 = , q= . Используя формулу получим Значит, ряд сходится и его сумма равна 1.

Сходимость и расходимость числовых рядов. Признак сходимости Даламбера :

Необходимый признак сходимости ряда. Ряд может сходиться только при условии, что его общий член u n при неограниченном увеличении номера n стремится к нулю:

Если , то ряд расходится - это достаточный признак растворимости ряда.


Достаточные признаки сходимости ряда с положительными членами.

Признак сравнения рядов с положительными членами. Исследуемый ряд сходится, если его члены не превосходят соответствующих членов другого, заведомо сходящегося ряда; исследуемый ряд расходится, если его члены превосходят соответствующие члены другого заведомо расходящегося ряда.

При исследовании рядов на сходимость и растворимость по этому признаку часто используется геометрический ряд

который сходится при |q|

,

являющийся расходящимся.

При исследовании рядов используется также обобщенный гармонический ряд

.

Если p = 1, то данный ряд обращается в гармонический ряд, который является расходящимся.

Если p < 1, то члены данного ряда больше соответствующих членов гармонического ряда и, значит, он расходится. При p > 1 имеем геометрический ряд, в котором |q | < 1; он является сходящимся. Итак, обобщенный гармонический ряд сходится при p > 1 и расходится при p £1.

Признак Даламбера . Если для ряда с положительными членами

(u n >0)

выполняется условие , то ряд сходится при l l > 1.

Признак Даламбера не дает ответа, если l = 1. В этом случае для исследования ряда применяются другие приемы.

Знакопеременные ряды.

Абсолютная и условная сходимость рядов:

Числовой ряд

u 1 + u 2 + u 3 + u n

называется знакопеременным, если среди его членов имеются как положительные, так и отрицательные числа.

Числовой ряд называется знакочередующимся, если любые два стоящие рядом члена имеют противоположные знаки. Этот ряд является частным случаем знакопеременного ряда.

Признак сходимости для знакочередующихся рядов . Если члены знакочередующегося ряда монотонно убывают по абсолютной величине и общий член u n стремится к нулю при n ® ,то ряд сходится.

Ряд называется абсолютно сходящимся, если ряд также сходится. Если ряд сходится абсолютно, то он является сходящимся (в обычном смысле). Обратное утверждение неверно. Ряд называется условно сходящимся, если сам он сходится, а ряд, составленный из модулей его членов, расходится. Пример 4. Исследовать на сходимость ряд .
Применим достаточный признак Лейбница для знакочередующихся рядов. Получаем поскольку . Следовательно, данный ряд сходится. Пример 5. Исследовать на сходимость ряд .
Попробуем применить признак Лейбница: Видно, что модуль общего члена не стремится к нулю при n → ∞ . Поэтому данный ряд расходится. Пример 6. Определить, является ли ряд абсолютно сходящимся, условно сходящимся или расходящимся.
Применяя признак Даламбера к ряду, составленному из модулей соответствующих членов, находим Следовательно, данный ряд сходится абсолютно.

Пример 7. Исследовать на сходимость (абсолютную или условную) знакочередующийся ряд:

1) Члены данного ряда по абсолютной величине монотонно убывают и . Следовательно, согласно признаку Лейбница, ряд сходится. Выясним, сходятся ли этот ряд абсолютно или условно.

2) Члены данного ряда по абсолютной величине монотонно убывают: , но

.

Функциональные ряды:

Обычный числовой ряд состоит из чисел:

Все члены ряда - это числа.

Функциональный же ряд состоит из функций:

В общий член ряда помимо многочленов, факториалов и т.д. непременно входит буква «икс». Выглядит это, например, так: . Как и числовой ряд, любой функциональный ряд можно расписать в развернутом виде:

Как видите, все члены функционального ряда - это функции .

Наиболее популярной разновидностью функционального ряда является степенной ряд .

Степенные ряды:

Степенным рядом называется ряд вида

,

где числа а 0 , а 1 , а 2 , а n называется коэффициентами ряда, а член a n x n - общим членом ряда.

Областью сходимости степенного ряда называется множество всех значений x , при которых данный ряд сходится.

Число R называется радиусом сходимости ряда, если при |x| ряд сходится.

Пример 8. Дан ряд

Исследовать его сходимость в точках x = 1 и х = 3, x = -2.

При х = 1 данный ряд превращается в числовой ряд

.

Исследуем сходимость этого ряда по признаку Даламбера. Имеем

т.е. ряд сходится.

При х = 3 получим ряд

Который расходится, так как не выполняется необходимый признак сходимости ряда

При х = -2 получим

Это знакочередующийся ряд, который, согласно признаку Лейбница, сходится.

Итак, в точках x = 1 и х = -2. ряд сходится, а в точке x = 3 расходится.

Разложение элементарных функций в ряд Маклорена:

Рядом Тейлора для функции f(x) называется степенной ряд вида



Рассказать друзьям