Что такое гипотеза пуанкаре. Гипотеза Пуанкаре: формулировка и доказательство

💖 Нравится? Поделись с друзьями ссылкой

Практически каждый человек, даже тот, кто не имеет никакого отношения к математике, слышал слова «гипотеза Пуанкаре», но не все могут объяснить, в чем ее суть. Для многих высшая математика кажется чем-то очень сложным и недоступным для понимания. Поэтому попробуем разобраться, что же означает гипотеза Пуанкаре простыми словами.

Содержание:

Что такое гипотеза Пуанкаре?

Формулировка гипотезы в оригинале звучит так: «Всякое компактное односвязное трехмерное многообразие без края гомеоморфно трёхмерной сфере ».

Шар – это геометрическое трехмерное тело, его поверхность называется сферой, она двумерна и состоит из точек трехмерного пространства, которые равноудалены от одной, не принадлежащей этой сфере, точки – центра шара. Кроме двумерных сфер, существуют еще трехмерные сферы, состоящие из множества точек четырехмерного пространства, которые так же равноудалены от одной, не принадлежащей сфере, точки – ее центра. Если двухмерные сферы мы можем увидеть собственными глазами, то трехмерные не подвластны нашему зрительному восприятию.



Поскольку мы не имеем возможности увидеть Вселенную, то можно предположить, что она и есть трехмерная сфера, в которой живет все человечество. В этом и состоит сущность гипотезы Пуанкаре. А именно то, что Вселенная имеет следующие свойства: трехмерность, бескрайность, односвязность, компактность. Понятие «гомеоморфность» в гипотезе означает высочайшую степень схожести, подобия, для случая со Вселенной – неотличимость.

Кто такой Пуанкаре?

Жюль Анри Пуанкаре – величайший математик, который родился в 1854 году во Франции. Его интересы не ограничивались только математической наукой, он изучал физику, механику, астрономию, философию. Был членом более 30 научных академий мира, в том числе Петербургской академии наук. Историки все времен и народов причисляют к величайшим математикам мира Давида Гильберта и Анри Пуанкаре. В 1904 году ученый издал знаменитую работу, которая содержала предположение, известное на сегодняшний день как «гипотеза Пуанкаре». Именно трехмерное пространство для математиков оказалось очень сложным для исследования, найти доказательства других случаев не составило труда. В течение около одного столетия доказывалась истинность этой теоремы.




В начале ХХІ века в Кембридже была учреждена премия в один миллион долл. США за решение этой научной задачи, которая входила в список проблем тысячелетия. Только российский математик из Санкт-Петербурга Григорий Перельман смог это сделать для трехмерной сферы. В 2006 году за это достижение ему была присвоена медаль Филдса, но он отказался от ее получения.

К заслугам в научной деятельности Пуанкаре можно отнести следующие достижения:

  • основание топологии (разработка теоретических основ различных явлений и процессов);
  • создание качественной теории дифференциальных уравнений;
  • разработка теории аморфных функций, которая стала основой специальной теории относительности;
  • выдвижение теоремы о возвращении;
  • разработка новейших, эффективнейших методов небесной механики.

Доказательство гипотезы

Односвязному трехмерному пространству присваиваются геометрические свойства, оно разделяется на метрические элементы, которые имеют расстояния между собой с образованием углов. Для упрощения берется в качестве образца одномерное многообразие, в котором на эвклидовой плоскости к гладкой замкнутой кривой проводятся в каждой точке касательные вектора, равные 1. При обходе кривой вектор поворачивается с определенной угловой скоростью, равной кривизне. Чем сильнее изгиб линии, тем больше кривизна. Кривизна имеет положительный наклон, если вектор скорости повернут в сторону внутренней части плоскости, которую делит линия, и отрицательный, если повернут вовне. В местах перегиба кривизна равна 0. Теперь каждой точке кривой назначается вектор, перпендикулярный вектору угловой скорости, а длиной равный величине кривизны. Он повернут внутрь, когда кривизна имеет положительный наклон, и вовне – когда отрицательный. Соответствующий вектор определяет направление и скорость, с которой движется каждая точка на плоскости. Если провести в любом месте замкнутую кривую, то при такой эволюции она превратится в окружность. Это справедливо для трехмерного пространства, что и требовалось доказать.




Пример: из воздушного шара при деформации без разрывов можно сделать разные фигуры. Но бублик сделать не получится, для этого его нужно только разрезать. И наоборот, имея бублик, никак не сделаешь цельный шар. Хотя из любой другой поверхности без разрывов при деформации можно получить сферу. Это свидетельствует о том, что эта поверхность гомеоморфна шару. Любой шар можно обвязать ниткой с одним узлом, с бубликом это сделать невозможно.

Шар – это самая простая трехмерная плоскость, которую можно деформировать и свернуть в точку и наоборот.

Важно! Гипотеза Пуанкаре утверждает эквивалентность замкнутого n-мерного многообразия n-мерной сфере в случае его гомеоморфности ей. Она стала отправной точкой в развитии теории о многомерных плоскостях.

"Зачем мне миллион?"

На весь мир известна история про гениального математика Григория Перельмана, доказавшего гипотезу Пуанкаре, который отказался от миллиона долларов. Недавно учёный-затворник объяснил, наконец, почему же он не взял заслуженную премию.

Началось всё с того, что журналист и продюсер кинокомпании «Президент-фильм» Александр Забровский догадался связаться с матерью Григория Яковлевича через еврейскую общину Петербурга. Ведь до этого все журналисты безрезультатно просиживали штаны на ступенях дома великого математика с целью взять у него интервью. Мать поговорила с сыном, дав журналисту хорошую характеристику, и только после этого Перельман согласился на встречу.

По словам Забровского, Григорий Яковлевич - вполне вменяемый и адекватный человек, а всё, что о нём говорили ранее - бред сивой кобылы. Он видит перед собой конкретную цель и знает, как к ней прийти.

Кинокомпания «Президент-фильм» с согласия Перельмана планирует снять о нем художественную ленту «Формула Вселенной». Математик и пошёл-то на контакт ради этого фильма, который будет не о нём, а о сотрудничестве и противоборстве трех основных мировых математических школ: российской, китайской и американской, наиболее продвинувшихся по стезе изучения и управления Вселенной. На вопрос о миллионе, который так волновал всех удивлённых и любопытных, Перельман ответил: «Я знаю, как управлять Вселенной. И скажите - зачем же мне бежать за миллионом?»

Учёный рассказал и про то, почему он не общается с журналистами. Причина в том, что их волнует не наука, а личная жизнь - стрижка ногтей и миллион. Его обижает, когда в прессе его называют Гришей, такую фамильярность математик считает неуважением к себе.

Со школьных лет Григорий Перельман привык «тренировать мозг», то есть решать задачи, которые заставляли мыслить абстрактно. И чтобы найти правильно решение, нужно было представить себе «кусочек мира». Например, математику предложили посчитать, с какой скоростью должен был идти Иисус Христос по воде, чтобы не провалиться. Оттуда и пошло желание Перельмана изучать свойства трехмерного пространства Вселенной.

Для чего же надо было столько лет биться над доказательством гипотезы Пуанкаре? Суть её такова: если трехмерная поверхность в чем-то похожа на сферу, то ее можно расправить в сферу. «Формулой Вселенной» утверждение Пуанкаре называют из-за его важности в изучении сложных физических процессов в теории мироздания и из-за того, что оно дает ответ на вопрос о форме Вселенной.

Григорий Яковлевич постиг таких сверхзнаний, которые помогают понять мироздание. И теперь математик постоянно под наблюдением российских и зарубежных спецслужб: а вдруг Перельман представляет угрозу для человечества? Ведь если с помощью его знаний можно свернуть Вселенную в точку, а потом ее развернуть, то мы можем погибнуть либо возродиться в ином качестве? И тогда мы ли это будем? И нужно ли нам вообще управлять Вселенной?

Доказательство длиною в век

Григорий Перельман окончательно и бесповоротно вошел в историю

Математический институт Клэя присудил Григорию Перельману Премию тысячелетия (Millennium Prize), тем самым официально признав верным доказательство гипотезы Пуанкаре, выполненное российским математиком. Примечательно, что при этом институту пришлось нарушить собственные правила - по ним на получение примерно миллиона долларов, именно таков размер премии, может претендовать только автор, опубликовавший свои работы в рецензируемых журналах. Работа Григория Перельмана формально так и не увидела свет - она осталась набором нескольких препринтов на сайте arXiv.org (один, два и три). Впрочем, не так важно, что стало причиной решения института - присуждение Премии тысячелетия ставит точку в истории длиной более чем в 100 лет.

Кружка, пончик и немного топологии

Прежде чем выяснить, в чем состоит гипотеза Пуанкаре, необходимо разобраться, что это за раздел математики - топология, - к которому эта самая гипотеза относится. Топология многообразий занимается свойствами поверхностей, которые не меняются при определенных деформациях. Поясним на классическом примере. Предположим, что перед читателем лежит пончик и стоит пустая чашка. С точки зрения геометрии и здравого смысла - это разные объекты хотя бы потому, что попить кофе из пончика не получится при всем желании.

Однако тополог скажет, что чашка и пончик - это одно и то же. И объяснит это так: вообразим, что чашка и пончик представляют собой полые внутри поверхности, изготовленные из очень эластичного материала (математик бы сказал, что имеется пара компактных двумерных многообразий). Проведем умозрительный эксперимент: сначала раздуем дно чашки, а потом ее ручку, после чего она превратится в тор (именно так математически называется форма пончика). Посмотреть, как примерно выглядит этот процесс можно.

Разумеется, у пытливого читателя возникает вопрос: раз поверхности можно мять, то как же их различать? Ведь, например, интуитивно понятно - как ни мни тор, без разрывов и склеек сферу из него не получишь. Тут в игру вступают так называемые инварианты - характеристики поверхности, которые не меняются при деформации, - понятие, необходимое для формулировки гипотезы Пуанкаре.

Здравый смысл подсказывает нам, что тор от сферы отличает дырка. Однако дырка - понятие далеко не математическое, поэтому его надо формализовать. Делается это так - представим, что на поверхности у нас имеется очень тонкая эластичная нить, образующая петлю (саму поверхность в этом умозрительном опыте, в отличие от предыдущего, считаем твердой). Будем двигать петлю, не отрывая ее от поверхности и не разрывая. Если нить можно стянуть до очень маленького кружочка (почти точки), то говорят, что петля стягиваема. В противном случае петля называется нестягиваемой.

Так вот, легко видеть, что на сфере любая петля стягиваема (как это примерно выглядит, можно посмотреть), а вот для тора это уже не так: на бублике есть целых две петли - одна продета в дырку, а другая обходит дырку "по периметру", - которые нельзя стянуть.

На этой картинке примеры нестягиваемых петель показаны красным и фиолетовым цветом соответственно. Когда на поверхности есть петли, математики говорят, что "фундаментальная группа многообразия нетривиальна", а если таких петель нет - то тривиальна.

Фундаментальная группа тора обозначается п1 (T2). Из-за того, что она нетривиальна, руки мыши образуют нестягиваемую петлю. Грусть на лице животного - результат осознания этого факта.



Так вот, легко видеть, что на сфере любая петля стягиваема, а вот для тора это уже не так: на бублике есть целых две петли - одна продета в дырку, а другая обходит дырку "по периметру", - которые нельзя стянуть. На этой картинке примеры нестягиваемых петель показаны красным и фиолетовым цветом соответственно.

Теперь, чтобы честно сформулировать гипотезу Пуанкаре, любознательному читателю осталось потерпеть еще немного: надо разобраться, что такое трехмерное многообразие в общем и трехмерная сфера в частности.

Вернемся на секундочку к поверхностям, которые мы обсуждали выше. Каждую из них можно разрезать на такие мелкие кусочки, что каждый будет почти напоминать кусочек плоскости. Так как у плоскости всего два измерения, то говорят, что и многообразие двумерно. Трехмерное многообразие - это такая поверхность, которую можно разрезать на мелкие кусочки, каждый из которых очень похож на кусочек обычного трехмерного пространства.

Главным "действующим лицом" гипотезы является трехмерная сфера. Представить себе трехмерную сферу как аналог обычной сферы в четырехмерном пространстве, не потеряв при этом рассудок, все-таки, наверное, невозможно. Однако описать этот объект, так сказать, "по частям" достаточно легко. Все, кто видел глобус, знают, что обычную сферу можно склеить из северного и южного полушария по экватору. Так вот, трехмерная сфера склеивается из двух шаров (северного и южного) по сфере, которая представляет собой аналог экватора.

На трехмерных многообразиях можно рассмотреть такие же петли, какие мы брали на обычных поверхностях. Так вот, гипотеза Пуанкаре утверждает: "Если фундаментальная группа трехмерного многообразия тривиальна, то оно гомеоморфно сфере". Непонятное словосочетание "гомеоморфно сфере" в переводе на неформальный язык означает, что поверхность можно продеформировать в сферу.

Немного истории



В 1887 году Пуанкаре представил работу на математический конкурс, посвященный 60-летию короля Швеции Оскара II. В ней обнаружилась ошибка, которая привела к появлению теории хаоса.

Вообще говоря, в математике можно сформулировать большое количество сложных утверждений. Однако что делает ту или иную гипотезу великой, отличает ее от остальных? Как это ни странно, но великую гипотезу отличает большое количество неправильных доказательств, в каждом из которых есть по великой ошибке - неточности, которая зачастую приводит к возникновению целого нового раздела математики.

Так, изначально Анри Пуанкаре, который отличался помимо всего прочего умением совершать гениальные ошибки, сформулировал гипотезу немного в другом виде, чем мы написали выше. Спустя некоторое время он привел контрпример к своему утверждению, который стал известен как гомологическая 3-сфера Пуанкаре, и в 1904 году сформулировал гипотезу уже в современном виде. Сферу, кстати, совсем недавно ученые приспособили в астрофизике - оказалось, что Вселенная вполне может оказаться гомологической 3-сферой Пуанкаре.

Надо сказать, что особого ажиотажа среди коллег-геометров гипотеза не вызвала. Так было до 1934 года, когда британский математик Джон Генри Уайтхед представил свой вариант доказательства гипотезы. Очень скоро, однако, он сам нашел в рассуждениях ошибку, которая позже привела к возникновению целой теории многообразий Уайтхеда.

После этого за гипотезой постепенно закрепилась слава крайне сложной задачи. Многие великие математики пытались взять ее приступом. Например, американский Эр Аш Бинг (R.H.Bing), математик, у которого (абсолютно официально) вместо имени в документах были записаны инициалы. Он предпринял несколько безуспешных попыток доказать гипотезу, сформулировав в ходе этого процесса собственное утверждение - так называемую "гипотезу о свойстве П" (Property P conjecture). Примечательно, что это утверждение, которое рассматривалось Бингом как промежуточное, оказалось чуть ли не сложнее доказательства самой гипотезы Пуанкаре.

Были среди ученых и люди, положившие жизнь на доказательство этого математического факта. Например, известный математик греческого происхождения Кристос Папакириакопоулос. В течение более десяти лет, Примечательно, что обобщение гипотезы Пуанкаре на многообразия размерности выше трех оказалось заметно проще оригинала - лишние размерности позволяли легче манипулировать многообразиями. Так, для n-мерных многообразий (при n не меньше 5) гипотеза была доказана Стивеном Смейлом в 1961 году. Для n = 4 гипотеза была доказана методом, совершенно отличным от смейловского, в 1982 году Майклом Фридманом. За свое доказательство последний получил Филдсовскую медаль - высшую награду для математиков. Работая в Принстоне, он безуспешно пытался доказать гипотезу. Он умер от рака в 1976 году. Примечательно, что обобщение гипотезы Пуанкаре на многообразия размерности выше трех оказалось заметно проще оригинала - лишние размерности позволяли легче манипулировать многообразиями. Так, для n-мерных многообразий (при n не меньше 5) гипотеза была доказана Стивеном Смейлом в 1961 году. Для n = 4 гипотеза была доказана методом, совершенно отличным от смейловского, в 1982 году Майклом Фридманом.
Описанные работы - это далеко не полный список попыток решения более чем столетней гипотезы. И хотя каждая из работ и привела к возникновению целого направления в математике и может считаться в этом смысле успешной и значимой, доказать гипотезу Пуанкаре окончательно удалось только россиянину Григорию Перельману.

Перельман и доказательство

В 1992 году Григорий Перельман, тогда сотрудник математического института им. Стеклова, попал на лекцию Ричарда Гамильтона. Американский математик рассказывал о потоках Риччи - новом инструменте для изучения гипотезы геометризации Терстона - факта, из которого гипотеза Пуанкаре получалась как простое следствие. Эти потоки, построенные в некотором смысле по аналогии с уравнениями теплопереноса, заставляли поверхности с течением времени деформироваться примерно так же, как в начале этой статьи мы деформировали двумерные поверхности. Оказалось, что в некоторых случаях результатом такой деформации оказывался объект, структуру которого легко понять. Основная трудность заключалась в том, что во время деформации возникали особенности с бесконечной кривизной, аналогичные в некотором смысле черным дырам в астрофизике.

После лекции Перельман подошел к Гамильтону. Позже он рассказывал, что Ричард его приятно удивил: "Он улыбался и был очень терпелив. Он даже рассказал мне несколько фактов, которые были опубликованы спустя лишь несколько лет. Он сделал это без колебаний. Его открытость и доброта поразили меня. Не могу сказать, что большинство современных математиков ведет себя так."

После поездки в США Перельман вернулся в Россию, где принялся трудиться над решением проблемы особенностей потоков Риччи и доказательством гипотезы геометризации (а вовсе не над гипотезой Пуанкаре) втайне от всех. Ничего удивительного, что появление 11 ноября 2002 года первого препринта Перельмана повергло математическую общественность в шок. Спустя некоторое время появилась еще пара работ.

После этого Перельман самоустранился от обсуждения доказательств и даже, говорят, прекратил заниматься математикой. Он не прервал своего уединенного образа жизни даже в 2006 году, когда ему была присуждена Филдсовская премия - самая престижная награда для математиков. Причины такого поведения автора обсуждать не имеет смысла - гений имеет право вести себя странно (например, будучи в Америке Перельман не стриг ногти, позволяя им свободно расти).

Как бы то ни было, доказательство Перельмана зажило
отдельной от него жизнью: три препринта не давали покоя математикам современности. Первые результаты проверки идей российского математика появились в 2006 году - крупные геометры Брюс Кляйнер и Джон Лотт из Мичиганского университета опубликовали препринт собственной работы, по размерам больше напоминающей книгу - 213 страниц. В этой работе ученые тщательно проверили все выкладки Перельмана, подробно пояснив различные утверждения, которые в работе российского математика были лишь вскользь обозначены. Вердикт исследователей был однозначен: доказательство абсолютно верное.

Неожиданный поворот в этой истории наступил в июле этого же года. В журнале Asian Journal of Mathematics появилась статья китайских математиков Сипин Чжу и Хуайдун Цао под названием "Полное доказательство гипотезы геометризации Терстона и гипотезы Пуанкаре". В рамках этой работы результаты Перельмана рассматривались как важные, полезные, но исключительно промежуточные. Данная работа вызвала удивление у специалистов на Западе, однако получила очень одобрительные отзывы на Востоке. В частности, результаты поддержал Шинтан Яу - один из основоположников теории Калаби-Яу, положившей начало теории струн, - а также учитель Цао и Джу. По счастливому стечению обстоятельств именно Яу был главным редактором журнала Asian Journal of Mathematics, в котором была опубликована работа.

После этого математик стал ездить по миру с популярными лекциями, рассказывая о достижениях китайских математиков. В результате возникла опасность, что очень скоро результаты Перельмана и даже Гамильтона окажутся отодвинуты на второй план. Такое в истории математики случалось не раз - многие теоремы, носящие имена конкретных математиков, были придуманы совершенно другими людьми.

Однако этого не случилось и, вероятно, теперь не случится. Вручение премии Клэя Перельману (даже если тот откажется) навсегда закрепило в общественном сознании факт: российский математик Григорий Перельман доказал гипотезу Пуанкаре. И неважно, что на самом деле он доказал факт более общий, развив по пути совершенно новую теорию особенностей потоков Риччи. Хотя бы так. Награда нашла героя.
Андрей Коняев

Подготовил: Сергей Коваль

Три независимых группы математиков утверждают, что полностью доказали гипотезу Пуанкаре — одну из самых сложных задач XX века. Окончательный вердикт, возможно, будет вскоре объявлен на Международном конгрессе математиков.

Процесс доказательства гипотезы Пуанкаре сейчас, по-видимому, вступает в заключительную стадию. Три группы математиков окончательно разобрались в идеях Григория Перельмана и за последние пару месяцев представили свои версии полного доказательства этой гипотезы.

За доказательство гипотезы Пуанкаре присудил премию в миллион долларов, что может показаться удивительным: ведь речь идет об очень частном, малоинтересном факте. На самом деле, для математиков важны не столько свойства трехмерной поверхности, сколько факт трудности самого доказательства. В этой задаче в концентрированном виде сформулировано то, что не удавалось доказать с помощью имевшихся ранее идей и методов геометрии и топологии. Она позволяет как бы заглянуть на уровень глубже, в тот пласт задач, который можно будет решить только с помощью идей «нового поколения».

На диск, эллипс можно натянуть изогнутую линию. Понятно,
что на шар, дыню можно натянуть круглую"лепешку" и
затянуть ее шнуром, как, например, рюкзак.

Логично предположить, что на N - мерный эллипсоид, в том
числе N-мерную сферу, и на подобные поверхности, может быть
натянута N-1 мерная сфера и затянута гипершнуром. Эллиптическая
сфера не может быть равномерно натянута на сферу или "дыню"
высшего порядка размерности. Попытки натянуть сферу на другую
фигуру высшей размерности, например, бублик, скорее всего,
будут неудачными.

Интересно рассмотреть полное покрытие поверхности N- ного порядка
поверхностью N-1 порядка, оставляющее "шов" меньшей размерности.

Топология помогает понимать суть высших размерностей при помощи
непрерывных деформаций поверхностей меньшей размерности.
То есть, описание нашего искривленного пространства дает ключ к
пониманию пространства высших размерностей.

Математик Г.Перельман доказал, что трехмерная сфера - это единственная
трехмерная форма, поверхность которой может быть стянута в одну точку
неким гипотетическим «гипершнуром».

Http://kp.ru/daily/24466.4/626061/#EDRT

Форма у нашей Вселенной. И позволяет в е с ь м а о б о с н о в а н н о
предположить, что она и есть та самая трехмерная сфера. Но если Вселенная -
единственная «фигура», которую можно стянуть в точку, то, наверное, можно
и растянуть из точки. Что служит косвенным подтверждением теории Большого
взрыва, которая утверждает: как раз из точки Вселенная и произошла.
Получается, что Перельман вместе с Пуанкаре огорчили так называемых
креационистов - сторонников божественного начала мироздания. И пролили
воду на мельницу физиков-материалистов".

Конечно же, Вселенная гораздо сложнее, чем сфера любой, какой угодно,
размерности! И понятие развития Вселенной из точки, так называемая
теория Большого взрыва, льет гораздо больше воды на другие мельницы -
теорий Божественного происхождения нашей Вселенной!

Рецензии

Любые теории происхождения самой вселенной - не состоятельны!
Допустимо рассуждать о происхождении знаний о вселенной.
Зрительное восприятие вселенной ограничено чисто физическими возможностями,
оптического канала наблюдения просторов вселенной,
наблюдателя, расположившегося на Земле или на орбите.
Второе ограничение возможностей наблюдения вселенной, физическое закономерное рассеяние мощности источника излучения в пространстве вселенной.
Третье ограничение накладывается самим пространством, преобразующим,
в своей среде, электромагнитные колебания, которыми является видимый свет, с длиной электромагнитной волны, в оптическом диапазоне:
от 400 нанометров, ... , - до 700 нанометров,- в электромагнитные колебания радиочастотного - невидимого для глаза спектра (инфракрасного, субмиллиметрового, миллиметрового, сантиметрового, дециметрового, метрового и далее, до квазистатического магнитного эффекта и квазистатического электричества, соответствующего
бесконечно длинным волнам), -
приводящее к пониманию неограниченности вселенной.
А! Путаницы, внесённые квази-учёными, смешавшими понятия галактики и вселенной, да, и, понятия свойственные церкви, считающей вселенную количеством прихожан в сельскую церковь, следует считать возложенными на совесть носителей этих понятий. В том числе, на совесть проповедников теории большого взрыва.
Альберт Эйнштейн, основатель теории относительности, потому так и назвал свою теорию, "Теорией Относительности", потому, что его теория - не теория "Абсолютности", а теория относительности, от математического понятия "отношение", используемое при измерениях, и применяемое в отношении "меры". А! Это, совершенно не применимо к неизмеримым величинам. К которым следует отнести человеческое понятие вселенной.
Альберт Эйнштейн сразу стал сопротивляться настойчивости "лже-друзей", пытающихся, натянуть понятие относительности на понятие абсолютности вселенной. Лже-друзья Альберта Эйнштейна, своей силовой сплочённостью сломили волю учёного, но это привело к уничтожению его серьёзных научных трудов.
Понятие вселенной выходит за пределы точных наук, и поэтому является "пробным камнем" или "камнем преткновения"
- "key stone of the pacific"- для философов.

2010, август, 06, пятница, 18:28:00 - время по Омскому меридиану.
Виктор Дмитриевич Перепёлкин

Здравствуйте! Уважаемый Всеволод Новопашин!
Здесь из Омска Виктор Перепёлкин.
Разлетания галактик не существует!!!
Потому, что разлетание - выдумка, базирующаяся
на желании получить "нобелевку", за обнаружение
взрыва вселенной, - путём указания на красное
"смещение",- которому приписывается результат
Допплеровского "сдвига" частот, в спектрах
галактик, которые удалены от Земли, на столько,
что мощность излучений очень ослаблена в
пространстве, причём, до такого предела,
что быстрые, то есть энергичные колебания, не
возможны, а до наблюдателя, доходят медленные,
то есть ослабленные колебания.
Член корреспондент Академии Наук СССР, до этого
получивший 7 - классное образование, и работавший
на дальневосточной дороге строителем
и
минуя 3 класса, не постигнув наук в 8, 9, и 10 -
классах средней общеобразовательной школы, путём
поступления в Дальневосточный университет,
а
затем Московский университет,
сразу в Астрономический институт, хотя у него
были серьёзные недостатки со зрением,
из за чего его не взяли в армию и даже на фронт,
занимаясь радиоастрономией, написал и опубликовал,
свою книгу под названием: "Жизнь Земля Вселенная",
в которой пропагандировал идеи большого взрыва,
из за которого, якобы появилась вселенная
и
реликтовое излучение на радиочастотах,
и про красное смещение спектров,
как Допплеровский эффект, который наблюдается,
в основном на железной дороге,
при близко проезжающем гудящем паровозе,
а
на больших расстояниях Допплеровский эффект
не существенен.
Поэтому нельзя рассматривать красное "смещение",
как эффект разбегания вселенной.
Вселенная НЕ РАЗБЕГАЕТСЯ!
Вселенная существовала всегда
и
вселенная будет существовать всегда.
Пространство вселенной не ограничено.
Галактики не разлетаются!
Изменение фокусировки телескопа, создаёт эффект
разлетания изображения, но не галактик.
Обман зрения. Результат восприятия человеком
перемещающихся меток на экране видео монитора.

Другой вопрос: "Об ограниченности восприятия
человеком пространства вселенной".

Ограничение восприятия - существует!

Ни какие технические средства,
- не позволяют увидеть того,
что располагается за пределами возможностей
оптического канала восприятия.
Расширение пределов восприятия вселенной,
становится возможным, если согласиться
с
существующим, не только наличием фильтрующего
эффекта космического пространства, как упомянул
Близнецов,
но
и
существующим в космическом пространстве эффекта
преобразования энергичных колебаний, в более
длинно волновые колебания, соответствующие
ослабленной энергии радиочастотных колебаний,
не видимых в оптическом
диапазоне электромагнитных колебаний,
доступных для восприятия простым глазом.
С уважением! Виктор Перепёлкин
2010, сентябрь, 28, вторник, 22:56:00,-
время по Омскому меридиану

«Проблема, которую решил Перельман , состоит в требовании доказать гипотезу, выдвинутую в 1904 году великим французским математиком Анри Пуанкаре (1854-1912) и носящую его имя. О роли Пуанкаре в математике трудно сказать лучше, чем это сделано в энциклопедии: «Труды Пуанкаре в области математики, с одной стороны, завершают классическое направление, а с другой - открывают пути к развитию новой математики, где наряду с количественными соотношениями устанавливаются факты, имеющие качественный характер» (БСЭ, изд. 3-е, т. 2). Гипотеза Пуанкаре как раз и имеет качественный характер - как и вся та область математики (а именно топология), к которой она относится и в создании которой Пуанкаре принял решающее участие.

На современном языке гипотеза Пуанкаре звучит так: всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере.

В следующих абзацах мы постараемся хотя бы частично и очень приблизительно разъяснить смысл этой устрашающей словесной формулы. Для начала заметим, что обычная сфера, которая есть поверхность обычного шара, двумерна (а сам шар - тот трёхмерен). Двумерная сфера состоит из всех точек трёхмерного пространства, равноудалённых от некоторой выделенной точки, называемой центром и сфере не принадлежащей. Трёхмерная сфера состоит из всех точек четырёхмерного пространства, равноудалённых от своего центра (сфере не принадлежащего). В отличие от двумерных сфер трёхмерные сферы недоступны нашему непосредственному наблюдению, и нам представить себе их так же трудно, как Василию Ивановичу из известного анекдота квадратный трёхчлен. Не исключено, однако, что все мы как раз в трёхмерной сфере и находимся, то есть что наша Вселенная является трёхмерной сферой.

В этом состоит значение результата Перельмана для физики и астрономии. Термин «односвязное компактное трёхмерное многообразие без края» содержит указания на предполагаемые свойства нашей Вселенной. Термин «гомеоморфно» означает некую высокую степень сходства, в известном смысле неотличимость. Формулировка в целом означает, следовательно, что если наша Вселенная обладает всеми свойствами односвязного компактного трёхмерного многообразия без края, то она - в том же самом «известном смысле» - и есть трёхмерная сфера.

Понятие односвязности - довольно простое понятие. Представим себе канцелярскую резинку (то есть резиновую нить со склеенными концами) столь упругую, что она, если её не удерживать, стянется в точку. От нашей резинки мы потребуем ещё, чтобы при стягивании в точку она не выходила за пределы той поверхности, на которой мы её расположили. Если мы растянем такую резинку на плоскости и отпустим, она немедленно стянется в точку. То же произойдёт, если мы расположим резинку на поверхности глобуса, то есть на сфере. Для поверхности спасательного круга ситуация окажется совершенно иной: любезный читатель легко найдёт такие расположения резинки на этой поверхности, при которой стянуть резинку в точку, не выходя за пределы рассматриваемой поверхности, невозможно. Геометрическая фигура называется односвязной, если любой замкнутый контур, расположенный в пределах этой фигуры, можно стянуть в точку, не выходя за названные пределы. Мы только что убедились, что плоскость и сфера односвязны, а поверхность спасательного круга не односвязна. Не односвязна и плоскость с вырезанной в ней дырой. Понятие односвязности применимо и к трёхмерным фигурам. Так, куб и шар односвязны: всякий находящийся в их толще замкнутый контур можно стянуть в точку, причём в процессе стягивания контур будет всё время оставаться в этой толще. А вот баранка не односвязна: в ней можно найти такой контур, который нельзя стянуть в точку так, чтобы в процессе стягивания контур всё время находился в тесте баранки. Не односвязен и крендель. Можно доказать, что трёхмерная сфера односвязна.

Надеемся, что читатель не забыл, ещё разницу между отрезком и интервалом, которой обучают в школе. Отрезок имеет два конца, он состоит из этих концов и всех точек, расположенных между ними. Интервал же состоит только из всех точек, расположенных между его концами, сами же концы в состав интервала не входят: можно сказать, что интервал - это отрезок с удалёнными из него концами, а отрезок - это интервал с добавленными к нему концами. Интервал и отрезок являются простейшими примерами одномерных многообразий, причём интервал есть многообразие без края, а отрезок - многообразие с краем; край в случае отрезка состоит из двух концов. Главное свойство многообразий, лежащее в основе их определения, состоит в том, что в многообразии окрестности всех точек, за исключением точек края (которого может и не быть), устроены совершенно одинаково.

При этом окрестностью какой-либо точки А называется совокупность всех точек, расположенных вблизи от этой точки А. Микроскопическое существо, живущее в многообразии без края и способное видеть только ближайшие к себе точки этого многообразия, не в состоянии определить, в какой именно точке оно, существо, находится: вокруг себя оно всегда видит одно и то же. Ещё примеры одномерных многообразий без края: вся прямая линия целиком, окружность. Примером одномерной фигуры, не являющейся многообразием, может служить линия в форме буквы Т: здесь есть особая точка, окрестность которой не похожа на окрестности других точек - это точка, где сходятся три отрезка. Другой пример одномерного многообразия - линия в форме восьмёрки; в особой точке здесь сходятся четыре линии. Плоскость, сфера, поверхность спасательного круга служат примерами двумерных многообразии без края. Плоскость с вырезанной в ней дырой также будет многообразием - а вот с краем или без края, зависит от того, куда мы относим контур дыры. Если мы относим его к дыре, получаем многообразие без края; если оставляем контур на плоскости, получаем многообразие с краем, каковым и будет служить этот контур. Разумеется, мы имели здесь в виду идеальное математическое вырезание, а при реальном физическом вырезании ножницами вопрос, куда относится контур, не имеет никакого смысла.

Несколько слов о трёхмерных многообразиях. Шар вместе со сферой, служащей его поверхностью, представляет собою многообразие с краем; указанная сфера как раз и является этим краем. Если мы удалим этот шар из окружающего пространства, получим многообразие без края. Если мы сдерём с шара его поверхность, получится то, что на математическом жаргоне называется «ошкуренный шар», а в более научном языке - открытый шар. Если удалить открытый шар из окружающего пространства, получится многообразие с краем, и краем будет служить та самая сфера, которую мы содрали с шара. Баранка вместе со своей корочкой есть трёхмерное многообразие с краем, а если отодрать корочку (которую мы трактуем как бесконечно тонкую, то есть как поверхность), получим многообразие без края в виде «ошкуренной баранки». Всё пространство в целом, если понимать его так, как оно понимается в средней школе, есть трёхмерное многообразие без края.

Математическое понятие компактность отчасти отражает тот смысл, какой слово «компактный» имеет в повседневном русском языке: «тесный», «сжатый». Геометрическая фигура называется компактной, если при любом расположении бесконечного числа её точек они накапливаются к одной из точек или ко многим точкам этой же фигуры. Отрезок компактен: для любого бесконечного множества его точек в отрезке найдётся хотя бы одна так называемая предельная точка, любая окрестность которой содержит бесконечно много элементов рассматриваемого множества. Интервал не компактен: можно указать такое множество его точек, которое накапливается к его концу, и только к нему, - но ведь конец не принадлежит интервалу!

За недостатком места мы ограничимся этим комментарием. Скажем лишь, что из рассмотренных нами примеров компактными являются отрезок, окружность, сфера, поверхности баранки и кренделя, шар (вместе со своей сферой), баранка и крендель (вместе со своими корочками). Напротив, интервал, плоскость, ошкуренные шар, баранка и крендель не являются компактными. Среди трёхмерных компактных геометрических фигур без края простейшей является трёхмерная сфера, но в нашем привычном «школьном» пространстве такие фигуры не умещаются. Самое, пожалуй, глубокое из тех понятий, которые связывает между собой гипотеза Пуанкаре , - это понятие гомеоморфии. Гомеоморфия - это наиболее высокая ступень геометрической одинаковости . Сейчас мы попытаемся дать приблизительное разъяснение этому понятию путём постепенного к нему приближения.

Уже в школьной геометрии мы встречаемся с двумя видами одинаковости - с конгруэнтностью фигур и с их подобием. Напомним, что фигуры называются конгруэнтными, если они совпадают друг с другом при наложении. В школе конгруэнтные фигуры как бы не различают, и потому конгруэнтность называют равенством. Конгруэнтные фигуры имеют одинаковые размеры во всех своих деталях. Подобие же, не требуя одинаковости размеров, означает одинаковость пропорций этих размеров; поэтому подобие отражает более сущностное сходство фигур, нежели конгруэнтность. Геометрия в целом - более высокая ступень абстракции, нежели физика, а физика - чем материаловедение.

Возьмём, к примеру, шарик подшипника, биллиардный шар, крокетный шар и мяч. Физика не вникает в такие детали, как материал, из которого они сделаны, а интересуется лишь такими свойствами, как объём, вес, электропроводность и т. п. Для математики - все они шары, различающиеся только размерами. Если шары имеют разные размеры, то они различаются для метрической геометрии, но все они одинаковы для геометрии подобия. С точки зрения геометрии подобия одинаковы и все шары, и все кубы, а вот шар и куб - не одинаковы.

А теперь посмотрим на тор. Top - эта та геометрическая фигура, форму которой имеют баранка и спасательный круг. Энциклопедия определяет тор как фигуру, полученную вращением круга вокруг оси, расположенной вне этого круга. Призываем благосклонного читателя осознать, что шар и куб «более одинаковы» между собой, чем каждый из них с тором. Наполнить это интуитивное осознание точным смыслом позволяет следующий мысленный эксперимент. Представим себе шар сделанным из материала столь податливого, что его можно изгибать, растягивать, сжимать и, вообще, деформировать как угодно, - нельзя только ни разрывать, ни склеивать. Очевидно, что шар тогда можно превратить в куб, но вот в тор превратить невозможно. Толковый словарь Ушакова определяет крендель как выпечку (буквально: как сдобную витую булку) в форме буквы В. При всём уважении к этому замечательному словарю, слова «в форме цифры 8» кажутся мне более точными; впрочем, с той точки зрения, которая выражена в понятии гомеоморфии, и выпечка в форме цифры 8, и выпечка в форме буквы В, и выпечка в форме фиты имеют одну и ту же форму. Даже если предположить, что хлебопёки сумели получить тесто, обладающее вышеуказанными свойствами податливости, колобок невозможно - без разрывов и склеиваний! - превратить ни в баранку, ни в крендель, как и последние две выпечки друг в друга. А вот превратить шарообразный колобок в куб или в пирамиду - можно. Любезный читатель, несомненно, сумеет найти и такую возможную форму выпечки, в которую нельзя превратить ни колобок, ни крендель, ни баранку.

Не назвав этого понятия, мы уже познакомились с гомеоморфией. Две фигуры называются гомеоморфными, если одну можно превратить в другую путём непрерывной (т. е. без разрывов и склеивании) деформации; сами такие деформации называются гомеоморфизмами. Мы только что выяснили, что шар гомеоморфен кубу и пирамиде, но не гомеоморфен ни тору, ни кренделю, а последние два тела не гомеоморфны между собой. Просим читателя понимать, что мы привели лишь приблизительное описание понятия гомеоморфии, данное в терминах механического преобразования.

Коснёмся философского аспекта понятия гомеоморфии. Представим себе мыслящее существо, живущее внутри какой-либо геометрической фигуры и не обладающее возможностью посмотреть на эту фигуру извне, «со стороны». Для него фигура, в которой оно живёт, образует Вселенную. Представим себе также, что когда объемлющая фигура подвергается непрерывной деформации, существо деформируется вместе с нею. Если фигура, о которой идёт речь, является шаром, то существо никаким способом не может различить, пребывает ли оно в шаре, в кубе или в пирамиде. Однако для него не исключена возможность убедиться, что его Вселенная не имеет формы тора или кренделя. Вообще, существо может установить форму окружающего его пространства лишь с точностью до гомеоморфии, то есть оно не в состоянии отличить одну форму от другой, коль скоро эти формы гомеоморфны.

Для математики значение гипотезы Пуанкаре , превратившейся теперь из гипотезы в теорему Пуанкаре - Перельмана, огромно (не зря ведь за решение проблемы был предложен миллион долларов), равно как огромно и значение найденного Перельманом способа её доказательства, но объяснить это значение здесь - вне нашего умения. Что же касается космологической стороны дела, то, возможно, значимость этого аспекта была несколько преувеличена журналистами.

Впрочем, некоторые авторитетные специалисты заявляют, что осуществлённый Перельманом научный прорыв может помочь в исследовании процессов формирования чёрных дыр. Чёрные дыры, кстати, служат прямым опровержением положения о познаваемости мира - одного из центральных положений того самого передового, единственно верного и всесильного учения, которое 70 лет насильственно вдалбливалось в наши бедные головы. Ведь, как учит физика, никакие сигналы из этих дыр не могут к нам поступать в принципе, так что узнать, что там происходит, невозможно. О том, как устроена наша Вселенная в целом, мы вообще знаем очень мало, и сомнительно, что когда-нибудь узнаем. Да и сам смысл вопроса о её устройстве не вполне ясен. Не исключено, что этот вопрос относится к числу тех, на которые, согласно учению Будды , не существует ответа. Физика предлагает лишь модели устройства, более или менее согласующиеся с известными фактами. При этом физика, как правило, пользуется уже разработанными заготовками, предоставляемыми ей математикой.

Математика не претендует, разумеется, на то, чтобы установить какие бы то ни было геометрические свойства Вселенной. Но она позволяет осмыслить те свойства, которые открыты другими науками. Более того. Она позволяет сделать более понятными некоторые такие свойства, которые трудно себе вообразить, она объясняет, как такое может быть. К числу таких возможных (подчеркнём: всего лишь возможных!) свойств относятся конечность Вселенной и её неориентируемость.

Долгое время единственной мыслимой моделью геометрического строения Вселенной служило трёхмерное евклидово пространство, то есть то пространство, которое известно всем и каждому из средней школы. Это пространство бесконечно; казалось, что никакие другие представления и невозможны; помыслить о конечности Вселенной казалось безумием. Однако ныне представление о конечности Вселенной не менее законно, чем представление о её бесконечности. В частности, конечна трёхмерная сфера. От общения с физиками у меня осталось впечатление, что одни отвечают «скорее всего. Вселенная бесконечна», другие же - «скорее всего, Вселенная конечна».

Успенский В.А. , Апология математики, или о математике как части духовной культуры, журнал «Новый мир», 2007 г., N 12, с. 141-145.



Рассказать друзьям