К какой группе относится кремний. Кремний в природе (25,8% в Земной коре)

💖 Нравится? Поделись с друзьями ссылкой

Один из самых распространенных в природе элементов - это silicium, или кремний. Такое широкое расселение говорит о важности и значимости данного вещества. Это быстро поняли и усвоили люди, которые научились правильно использовать в своих целях кремний. Применение его основано на особых свойствах, о которых и поговорим дальше.

Кремний - химический элемент

Если давать характеристику данного элемента по положению в периодической системе, то можно обозначить следующие важные пункты:

  1. Порядковый номер - 14.
  2. Период - третий малый.
  3. Группа - IV.
  4. Подгруппа - главная.
  5. Строение внешней электронной оболочки выражается формулой 3s 2 3p 2 .
  6. Элемент кремний обозначается химическим символом Si, который произносится как "силициум".
  7. Степени окисления, которые он проявляет: -4; +2; +4.
  8. Валентность атома равна IV.
  9. Атомная масса кремния равна 28,086.
  10. В природе существует три устойчивых изотопа данного элемента с массовыми числами 28, 29 и 30.

Таким образом, атом кремния с химической точки зрения - достаточно изученный элемент, описано множество различных его свойств.

История открытия

Так как в природе очень популярны и массовы по содержанию именно различные соединения рассматриваемого элемента, издревле люди использовали и знали о свойствах именно многих из них. Чистый же кремний долгое время оставался за гранью познаний человека в химии.

Наиболее популярными соединениями, которыми пользовались в быту и промышленности народы древних культур (египтяне, римляне, китайцы, русичи, персы и прочие), были драгоценные и поделочные камни на основе оксида кремния. К ним относятся:

  • опал;
  • горный хрусталь;
  • топаз;
  • хризопраз;
  • оникс;
  • халцедон и другие.

Также издревле принято использовать кварц и в строительном деле. Однако сам элементарный кремний оставался нераскрытым вплоть до XIX века, хотя многие ученые тщетно пытались выделить его из разных соединений, используя для этого и катализаторы, и высокие температуры, и даже электрический ток. Это такие светлые умы, как:

  • Карл Шееле;
  • Гей-Люссак;
  • Тенар;
  • Гемфри Дэви;
  • Антуан Лавуазье.

Осуществить удачно получение кремния в чистом виде удалось Йенсу Якобсу Берцелиусу в 1823 году. Для этого он проводил опыт по сплавлению паров фтористого кремния и металлического калия. В результате получил аморфную модификацию рассматриваемого элемента. Этим же ученым было предложено латинское название открытому атому.

Еще несколько позже, в 1855 году, другой ученый - Сент Клер-Девилль - сумел синтезировать другую аллотропную разновидность - кристаллический кремний. С тех пор знания о данном элементе и его свойствах стали очень быстро пополняться. Люди поняли, что он обладает уникальными особенностями, которые можно очень грамотно использовать для удовлетворения собственных нужд. Поэтому сегодня один из самых востребованных элементов в электронике и технике - это кремний. Применение его лишь расширяет свои границы с каждым годом.

Русское название атому дал ученый Гесс в 1831 году. Именно оно и закрепилось до сегодняшнего дня.

По распространенности в природе кремний занимает второе место после кислорода. Его процентное соотношение в сравнении с другими атомами в составе земной коры - 29,5%. Кроме того, углерод и кремний - это два особых элемента, способных формировать цепи, соединяясь друг с другом. Именно поэтому для последнего известно более 400 различных природных минералов, в составе которых он и содержится в литосфере, гидросфере и биомассе.

Где конкретно содержится кремний?

  1. В глубоких слоях почвы.
  2. В горных породах, залежах и массивах.
  3. На дне водоемов, особенно морей и океанов.
  4. В растениях и морских обитателях царства животных.
  5. В организме человека и наземных животных.

Можно обозначить несколько самых распространенных минералов и горных пород, в составе которых в большом количестве присутствует кремний. Химия их такова, что массовое содержание чистого элемента в них достигает 75%. Однако конкретная цифра зависит от разновидности материала. Итак, горные породы и минералы с содержанием кремния:

  • полевые шпаты;
  • слюды;
  • амфиболы;
  • опалы;
  • халцедоны;
  • силикаты;
  • песчаники;
  • алюмосиликаты;
  • глины и прочие.

Накапливаясь в панцирях и наружных скелетах морских животных, кремний со временем формирует мощные залежи кремнезема на дне водоемов. Это один из природных источников данного элемента.

Кроме того, было установлено, что силициум может существовать в чистом самородном виде - в виде кристаллов. Но подобные месторождения очень редки.

Физические свойства кремния

Если давать характеристику рассматриваемого элемента по набору физико-химических свойств, то в первую очередь следует обозначить именно физические параметры. Вот несколько основных:

  1. Существует в виде двух аллотропных модификаций - аморфный и кристаллический, которые отличаются по всем свойствам.
  2. Кристаллическая решетка очень схожа с таковой у алмаза, ведь углерод и кремний в этом отношении практически одинаковы. Однако расстояние между атомами разное (у кремния больше), поэтому алмаз гораздо тверже и прочнее. Тип решетки - кубическая гранецентрированная.
  3. Вещество очень хрупкое, при высоких температурах становится пластичным.
  4. Температура плавления равна 1415˚С.
  5. Температура кипения - 3250˚С.
  6. Плотность вещества - 2,33 г/см 3 .
  7. Цвет соединения - серебристо-серый, выражен характерный металлический блеск.
  8. Обладает хорошими полупроводниковыми свойствами, которые способны варьировать при добавлении тех или иных агентов.
  9. Не растворяется в воде, органических растворителях и кислотах.
  10. Специфически растворим в щелочах.

Обозначенные физические свойства кремния позволяют людям управлять им и применять для создания различных изделий. Так, например, на свойствах полупроводимости основано использование чистого кремния в электронике.

Химические свойства

Химические свойства кремния очень сильно зависят от условий проведения реакции. Если говорить о при стандартных параметрах, то нужно обозначить очень низкую активность. Как кристаллический, так и аморфный кремний очень инертны. Не взаимодействуют ни с сильными окислителями (кроме фтора), ни с сильными восстановителями.

Это связано с тем, что на поверхности вещества мгновенно формируется оксидная пленка SiO 2 , которая препятствует дальнейшим взаимодействиям. Она способна образоваться под влиянием воды, воздуха, паров.

Если же изменить стандартные условия и произвести нагревание кремния до температуры свыше 400˚С, то его химическая активность сильно возрастет. В этом случае он будет вступать в реакции с:

  • кислородом;
  • всеми видами галогенов;
  • водородом.

При дальнейшем повышении температуры возможно образование продуктов при взаимодействии с бором, азотом и углеродом. Особое значение имеет карборунд - SiC, так как он является хорошим абразивным материалом.

Также химические свойства кремния четко прослеживаются при реакциях с металлами. По отношению к ним он окислитель, поэтому продукты носят название силицидов. Известны подобные соединения для:

  • щелочных;
  • щелочноземельных;
  • переходных металлов.

Необычными свойствами обладает соединение, получаемое при сплавлении железа и кремния. Оно носит название ферросилициевой керамики и успешно применяется в промышленности.

Со сложными веществами кремний во взаимодействие не вступает, поэтому из всех их разновидностей способен растворяться лишь в:

  • царской водке (смесь азотной и соляной кислот);
  • едких щелочах.

При этом температура раствора должна быть не меньше 60˚С. Все это еще раз подтверждает физическую основу вещества - алмазоподобную устойчивую кристаллическую решетку, придающую ему прочность и инертность.

Способы получения

Получение кремния в чистом виде - процесс достаточно затратный экономически. Кроме того, в силу его свойств любой способ дает лишь на 90-99 % чистый продукт, в то время как примеси в виде металлов и углерода остаются все равно. Поэтому просто получить вещество недостаточно. Его следует еще и качественно очистить от посторонних элементов.

В целом же производство кремния осуществляется двумя основными путями:

  1. Из белого песка, который представляет собой чистый оксид кремния SiO 2 . При прокаливании его с активными металлами (чаще всего с магнием) происходит образование свободного элемента в виде аморфной модификации. Чистота такого способа высока, продукт получается с 99,9-процентным выходом.
  2. Более широко распространенный способ в промышленных масштабах - это спекание расплава песка с коксом в специализированных термических печах для обжига. Данный способ был разработан русским ученым Бекетовым Н. Н.

Дальнейшая обработка заключается в подвергании продуктов методам очистки. Для этого используются кислоты или галогены (хлор, фтор).

Аморфный кремний

Характеристика кремния будет неполной, если не рассмотреть отдельно каждую его аллотропную модификацию. Первая из них - это аморфная. В таком состоянии рассматриваемое нами вещество представляет собой порошок буро-коричневого цвета, мелкодисперсный. Обладает высокой степенью гигроскопичности, проявляет достаточно высокую химическую активность при нагревании. В стандартных условиях способен взаимодействовать только с сильнейшим окислителем - фтором.

Называть аморфный кремний именно разновидностью кристаллического не совсем правильно. Его решетка показывает, что данное вещество - это лишь форма мелкодисперсного кремния, существующего в виде кристаллов. Поэтому как таковые эти модификации - одно и то же соединение.

Однако свойства их различаются, поэтому и принято говорить об аллотропии. Сам по себе аморфный кремний обладает высокой светопоглотительной способностью. Кроме того, при определенных условиях данный показатель в разы превышает подобный у кристаллической формы. Поэтому его используют в технических целях. В рассматриваемом виде (порошок) соединение легко наносится на любую поверхность, будь то пластик или стекло. Поэтому так удобен для использования именно аморфный кремний. Применение основано на различных размеров.

Хотя износ батарей подобного типа довольно быстрый, что связано с истиранием тонкой пленки вещества, однако применение и востребованность только растет. Ведь даже за короткий срок службы солнечные батареи на основе аморфного кремния способны обеспечить энергией целые предприятия. К тому же производство подобного вещества безотходное, что делает его очень экономным.

Получают такую модификацию путем восстановления соединений активными металлами, например, натрием или магнием.

Кристаллический кремний

Серебристо-серая блестящая модификация рассматриваемого элемента. Именно такая форма является самой распространенной и наиболее востребованной. Это объясняется набором качественных свойств, которыми обладает данное вещество.

Характеристика кремния с кристаллической решеткой включает в себя классификацию его видов, так как их несколько:

  1. Электронного качества - самый чистый и максимально высококачественный. Именно такой вид используется в электронике для создания особо чувствительных приборов.
  2. Солнечного качества. Само название определяет область использования. Это также достаточно высокий по чистоте кремний, применение которого необходимо для создания качественных и долго работающих солнечных батарей. Фотоэлектрические преобразователи, созданные на основе именно кристаллической структуры, более качественны и износостойки, нежели те, что созданы с использованием аморфной модификации путем напыления на различного типа подложки.
  3. Технический кремний. В данную разновидность включаются те образцы вещества, в которых содержится около 98 % чистого элемента. Все остальное уходит на различного рода примеси:
  • алюминий;
  • хлор;
  • углерод;
  • фосфор и прочие.

Последняя разновидность рассматриваемого вещества используется с целью получения поликристаллов кремния. Для этого проводятся процессы перекристаллизации. Вследствие этого по чистоте получаются такие продукты, которые можно относить к группам солнечного и электронного качества.

По своей природе поликремний - это промежуточный продукт между аморфной модификацией и кристаллической. С таким вариантом легче работать, он лучше подвергается переработке и очистке фтором и хлором.

Продукты, которые получаются в результате, можно классифицировать так:

  • мультикремний;
  • монокристаллический;
  • профилированные кристаллы;
  • кремниевый скрап;
  • технический кремний;
  • отходы производства в виде осколков и обрезков вещества.

Каждый из них находит применение в промышленности и используется человеком полностью. Поэтому касающиеся кремния, считаются безотходными. Это значительно снижает его экономическую стоимость, при этом не влияя на качество.

Использование чистого кремния

Производство кремния в промышленности налажено достаточно хорошо, а его масштабы довольно объемны. Это связано с тем, что данный элемент, как чистый, так и в виде различных соединений, широко распространен и востребован в разных отраслях науки и техники.

Где же используется кристаллический и аморфный кремний в чистом виде?

  1. В металлургии как легирующая добавка, способная менять свойства металлов и их сплавов. Так, он используется при выплавке стали и чугуна.
  2. Разные виды вещества уходят на изготовление более чистого варианта - поликремния.
  3. Соединения кремния с - это целая химическая отрасль, которая получила особую популярность сегодня. Кремнийорганические материалы используются в медицине, при изготовлении посуды, инструментов и многого другого.
  4. Изготовление различных солнечных батарей. Этот способ получения энергии является одним из самых перспективных в будущем. Экологически чисто, экономически выгодно и износостойко - основные достоинства такого получения электричества.
  5. Кремний для зажигалок используется уже очень давно. Еще в древности люди использовали кремень для получения искры при розжиге огня. Этот принцип заложен в основу производства зажигалок различного рода. Сегодня встречаются виды, в которых кремень заменен на сплав определенного состава, дающий еще более быстрый результат (искрение).
  6. Электроника и солнечная энергетика.
  7. Изготовление зеркалец в газовых лазерных устройствах.

Таким образом, чистый кремний имеет массу преимущественных и особенных свойств, позволяющих использовать его для создания важных и нужных продуктов.

Применение соединений кремния

Помимо простого вещества, используются и различные соединения кремния, причем очень широко. Существует целая отрасль промышленности, которая называется силикатной. Именно она основана на использовании различных веществ, в состав которых входит этот удивительный элемент. Какие это соединения и что из них производят?

  1. Кварц, или речной песок - SiO 2 . Используется для изготовления таких строительных и декоративных материалов, как цемент и стекло. Где используются эти материалы, всем известно. Ни одно строительство не обходится без данных компонентов, что подтверждает значимость соединений кремния.
  2. Силикатная керамика, в которую входят такие материалы, как фаянс, фарфор, кирпич и продукты на их основе. Данные компоненты используются в медицине, при изготовлении посуды, декоративных украшений, предметов быта, в строительстве и прочих бытовых областях деятельности человека.
  3. - силиконы, силикагели, силиконовые масла.
  4. Силикатный клей - используется как канцелярский, в пиротехнике и строительстве.

Кремний, цена на который варьирует на мировом рынке, но не пересекает сверху вниз отметку в 100 рублей РФ за килограмм (за кристаллический), является востребованным и ценным веществом. Естественно, что и соединения этого элемента так же широко распространены и применимы.

Биологическая роль кремния

С точки зрения значимости для организма кремний немаловажен. Его содержание и распределение по тканям таково:

  • 0,002 % - мышечная;
  • 0,000017 % - костная;
  • кровь - 3,9 мг/л.

Каждый день внутрь должно попадать около одного грамма кремния, иначе начнут развиваться заболевания. Смертельно опасных среди них нет, однако длительное кремниевое голодание приводит к:

  • выпадению волос;
  • появлению угревой сыпи и прыщей;
  • хрупкости и ломкости костей;
  • легкой проницаемости капилляров;
  • усталости и головным болям;
  • появлению многочисленных синяков и кровоподтеков.

Для растений кремний - важный микроэлемент, необходимый для нормального роста и развития. Опыты на животных показали, что лучше растут те особи, которые ежедневно потребляют достаточное количество кремния.

Кремний (лат. silicium), si, химический элемент iv группы периодической системы Менделеева; атомный номер 14, атомная масса 28,086. В природе элемент представлен тремя стабильными изотопами: 28 si (92,27%), 29 si (4,68%) и 30 si (3,05%).

Историческая справка . Соединения К., широко распространённые на земле, были известны человеку с каменного века. Использование каменных орудий для труда и охоты продолжалось несколько тысячелетий. Применение соединений К., связанное с их переработкой, - изготовление стекла - началось около 3000 лет до н. э. (в Древнем Египте). Раньше других известное соединение К. - двуокись sio 2 (кремнезём). В 18 в. кремнезём считали простым телом и относили к «землям» (что и отражено в его названии). Сложность состава кремнезёма установил И. Я. Берцелиус. Он же впервые, в 1825, получил элементарный К. из фтористого кремния sif 4 , восстанавливая последний металлическим калием. Новому элементу было дано название «силиций» (от лат. silex - кремень). Русское название ввёл Г. И. Гесс в 1834.

Распространённость в природе . По распространённости в земной коре К. - второй (после кислорода) элемент, его среднее содержание в литосфере 29,5% (по массе). В земной коре К. играет такую же первостепенную роль, как углерод в животном и растительном мире. Для геохимии К. важна исключительно прочная связь его с кислородом. Около 12% литосферы составляет кремнезём sio 2 в форме минерала кварца и его разновидностей. 75% литосферы слагают различные силикаты и алюмосиликаты (полевые шпаты, слюды, амфиболы и т. д.). Общее число минералов, содержащих кремнезём, превышает 400.

При магматических процессах происходит слабая дифференциация К.: он накапливается как в гранитоидах (32,3%), так и в ультраосновных породах (19%). При высоких температурах и большом давлении растворимость sio 2 повышается. Возможна его миграция и с водяным паром, поэтому для пегматитов гидротермальных жил характерны значительные концентрации кварца, с которым нередко связаны и рудные элементы (золото-кварцевые, кварцево-касситеритовые и др. жилы).

Физические и химические свойства. К. образует тёмно-серые с металлическим блеском кристаллы, имеющие кубическую гранецентрированную решётку типа алмаза с периодом а = 5,431 a , плотностью 2,33 г/см 3 . При очень высоких давлениях получена новая (по-видимому, гексагональная) модификация с плотностью 2,55 г/см 3 . К. плавится при 1417°С, кипит при 2600°С. Удельная теплоёмкость (при 20-100°С) 800 дж/ (кг? К), или 0,191 кал/ (г? град) ; теплопроводность даже для самых чистых образцов не постоянна и находится в пределах (25°С) 84-126 вт/ (м? К), или 0,20-0,30 кал/ (см? сек? град) . Температурный коэффициент линейного расширения 2,33 ? 10 -6 К -1 ; ниже 120k становится отрицательным. К. прозрачен для длинноволновых ИК-лучей; показатель преломления (для l =6 мкм) 3,42; диэлектрическая проницаемость 11,7. К. диамагнитен, атомная магнитная восприимчивость -0,13 ? 10 -6 . Твёрдость К. по Моосу 7,0, по Бринеллю 2,4 Гн/м 2 (240 кгс/мм 2) , модуль упругости 109 Гн/м 2 (10890 кгс/мм 2) , коэффициент сжимаемости 0,325 ? 10 -6 см 2 /кг. К. хрупкий материал; заметная пластическая деформация начинается при температуре выше 800°С.

К. - полупроводник, находящий всё большее применение. Электрические свойства К. очень сильно зависят от примесей. Собственное удельное объёмное электросопротивление К. при комнатной температуре принимается равным 2,3 ? 10 3 ом ? м (2,3 ? 10 5 ом ? см ) .

Полупроводниковый К. с проводимостью р -типа (добавки В, al, in или ga) и n -типа (добавки Р, bi, as или sb) имеет значительно меньшее сопротивление. Ширина запрещенной зоны по электрическим измерениям составляет 1,21 эв при 0 К и снижается до 1,119 эв при 300 К .

В соответствии с положением К. в периодической системе Менделеева 14 электронов атома К. распределены по трём оболочкам: в первой (от ядра) 2 электрона, во второй 8, в третьей (валентной) 4; конфигурация электронной оболочки 1s 2 2s 2 2p 6 3s 2 3p 2 . Последовательные потенциалы ионизации (эв ): 8,149; 16,34; 33,46 и 45,13. Атомный радиус 1,33 a , ковалентный радиус 1,17 a , ионные радиусы si 4+ 0,39 a , si 4- 1,98 a .

В соединениях К. (аналогично углероду) 4-валентен. Однако, в отличие от углерода, К. наряду с координационым числом 4 проявляет координационное число 6, что объясняется большим объёмом его атома (примером таких соединений являются кремнефториды, содержащие группу 2-).

Химическая связь атома К. с другими атомами осуществляется обычно за счёт гибридных sp 3 -орбиталей, но возможно также вовлечение двух из его пяти (вакантных) 3 d- орбиталей, особенно когда К. является шестикоординационным. Обладая малой величиной электроотрицательности, равной 1,8 (против 2,5 у углерода; 3,0 у азота и т. д.), К. в соединениях с неметаллами электроположителен, и эти соединения носят полярный характер. Большая энергия связи с кислородом si-o, равная 464 кдж/моль (111 ккал/моль ) , обусловливает стойкость его кислородных соединений (sio 2 и силикатов). Энергия связи si-si мала, 176 кдж/моль (42 ккал/моль ) ; в отличие от углерода, для К. не характерно образование длинных цепей и двойной связи между атомами si. На воздухе К. благодаря образованию защитной окисной плёнки устойчив даже при повышенных температурах. В кислороде окисляется начиная с 400°С, образуя кремния двуокись sio 2 . Известна также моноокись sio, устойчивая при высоких температурах в виде газа; в результате резкого охлаждения может быть получен твёрдый продукт, легко разлагающийся на тонкую смесь si и sio 2 . К. устойчив к кислотам и растворяется только в смеси азотной и фтористоводородной кислот; легко растворяется в горячих растворах щелочей с выделением водорода. К. реагирует с фтором при комнатной температуре, с остальными галогенами - при нагревании с образованием соединений общей формулы six 4. Водород непосредственно не реагирует с К., и кремневодороды (силаны) получают разложением силицидов (см. ниже). Известны кремневодороды от sih 4 до si 8 h 18 (по составу аналогичны предельным углеводородам). К. образует 2 группы кислородсодержащих силанов - силоксаны и силоксены. С азотом К. реагирует при температуре выше 1000°С. Важное практическое значение имеет нитрид si 3 n 4 , не окисляющийся на воздухе даже при 1200°С, стойкий по отношению к кислотам (кроме азотной) и щелочам, а также к расплавленным металлам и шлакам, что делает его ценным материалом для химической промышленности, для производства огнеупоров и др. Высокой твёрдостью, а также термической и химической стойкостью отличаются соединения К. с углеродом (кремния карбид sic) и с бором (sib 3 , sib 6 , sib 12). При нагревании К. реагирует (в присутствии металлических катализаторов, например меди) с хлорорганическими соединениями (например, с ch 3 cl) с образованием органогалосиланов [например, si (ch 3) 3 ci], служащих для синтеза многочисленных кремнийорганических соединений.

К. образует соединения почти со всеми металлами - силициды (не обнаружены соединения только с bi, tl, pb, hg). Получено более 250 силицидов, состав которых (mesi, mesi 2 , me 5 si 3 , me 3 si, me 2 si и др.) обычно не отвечает классическим валентностям. Силициды отличаются тугоплавкостью и твёрдостью; наибольшее практическое значение имеют ферросилиций и силицид молибдена mosi 2 (нагреватели электропечей, лопатки газовых турбин и т. д.).

Получение и применение. К. технической чистоты (95-98%) получают в электрической дуге восстановлением кремнезёма sio 2 между графитовыми электродами. В связи с развитием полупроводниковой техники разработаны методы получения чистого и особо чистого К. Это требует предварительного синтеза чистейших исходных соединений К., из которых К. извлекают путём восстановления или термического разложения.

Чистый полупроводниковый К. получают в двух видах: поликристаллический (восстановлением sici 4 или sihcl 3 цинком или водородом, термическим разложением sil 4 и sih 4) и монокристаллический (бестигельной зонной плавкой и «вытягиванием» монокристалла из расплавленного К. - метод Чохральского).

Специально легированный К. широко применяется как материал для изготовления полупроводниковых приборов (транзисторы, термисторы, силовые выпрямители тока, управляемые диоды - тиристоры; солнечные фотоэлементы, используемые в космических кораблях, и т. д.). Поскольку К. прозрачен для лучей с длиной волны от 1 до 9 мкм, его применяют в инфракрасной оптике.

К. имеет разнообразные и всё расширяющиеся области применения. В металлургии К. используется для удаления растворённого в расплавленных металлах кислорода (раскисления). К. является составной частью большого числа сплавов железа и цветных металлов. Обычно К. придаёт сплавам повышенную устойчивость к коррозии, улучшает их литейные свойства и повышает механическую прочность; однако при большем его содержании К. может вызвать хрупкость. Наибольшее значение имеют железные, медные и алюминиевые сплавы, содержащие К. Всё большее количество К. идёт на синтез кремнийорганических соединений и силицидов. Кремнезём и многие силикаты (глины, полевые шпаты, слюды, тальки и т. д.) перерабатываются стекольной, цементной, керамической, электротехнической и др. отраслями промышленности.

В. П. Барзаковский.

Кремний в организме находится в виде различных соединений, участвующих главным образом в образовании твёрдых скелетных частей и тканей. Особенно много К. могут накапливать некоторые морские растения (например, диатомовые водоросли) и животные (например, кремнероговые губки, радиолярии), образующие при отмирании на дне океана мощные отложения двуокиси кремния. В холодных морях и озёрах преобладают биогенные илы, обогащенные К., в тропических морях - известковые илы с низким содержанием К. Среди наземных растений много К. накапливают злаки, осоки, пальмы, хвощи. У позвоночных животных содержание двуокиси кремния в зольных веществах 0,1-0,5%. В наибольших количествах К. обнаружен в плотной соединительной ткани, почках, поджелудочной железе. В суточном рационе человека содержится до 1 г К. При высоком содержании в воздухе пыли двуокиси кремния она попадает в лёгкие человека и вызывает заболевание - силикоз.

В. В. Ковальский.

Лит.: Бережной А. С., Кремний и его бинарные системы. К., 1958; Красюк Б. А., Грибов А. И., Полупроводники - германий и кремний, М., 1961; Реньян В. Р., Технология полупроводникового кремния, пер. с англ., М., 1969; Салли И. В., Фалькевич Э. С., Производство полупроводникового кремния, М., 1970; Кремний и германий. Сб. ст., под ред. Э. С. Фалькевича, Д. И. Левинзона, в. 1-2, М., 1969-70; Гладышевский Е. И., Кристаллохимия силицидов и германидов, М., 1971; wolf Н. f., silicon semiconductor data, oxf. - n. y., 1965.

cкачать реферат

КРЕМНИЙ (латинский Silicium), Si, химический элемент IV группы короткой формы (14-й группы длинной формы) периодической системы; атомный номер 14, атомная масса 28,0855. Природный кремний состоит из трёх стабильных изотопов: 28 Si (92,2297%), 29 Si (4,6832%), 30 Si (3,0872%). Искусственно получены радиоизотопы с массовыми числами 22-42.

Историческая справка . Широко распространённые на земле соединения кремния использовались человеком с каменного века; например, с глубокой древности до железного века кремень применяли для выделки каменных орудий труда. Переработка соединений кремния - изготовление стекла - началась в 4-м тысячелетии до нашей эры в Древнем Египте. Элементарный кремний получен в 1824-25 Й. Берцелиусом при восстановлении фторида SiF 4 металлическим калием. Новому элементу было дано название «силиций» (от латинского silex - кремень; русское название «кремний», введённое в 1834 Г. И. Гессом, также происходит от слова «кремень»).

Распространённость в природе . По распространённости в земной коре кремний - второй химический элемент (после кислорода): содержание кремния в литосфере составляет 29,5% по массе. В свободном состоянии в природе не встречается. Важнейшие минералы, содержащие кремний, - алюмосиликаты и силикаты природные (амфиболы природные, полевые шпаты, слюды и др.), а также кремнезёма минералы (кварц и другие полиморфные модификации кремния диоксида).

Свойства . Конфигурация внешней электронной оболочки атома кремния 3s 2 3р 2 . В соединениях проявляет степень окисления +4, редко +1, +2, +3, -4; электроотрицательность по Полингу 1,90, потенциалы ионизации Si 0 → Si + →Si 2+ → Si 3+ →Si 4+ соответственно равны 8,15, 16,34, 33,46 и 45,13 эВ; атомный радиус 110 пм, радиус иона Si 4+ 40 пм (координационное число 4), 54 пм (координационное число 6).

Кремний - тёмно-серое твёрдое хрупкое кристаллическое вещество с металлическим блеском. Кристаллическая решётка кубическая гранецентрированная; t пл 1414 °С, t кип 2900 °С, плотность 2330 кг/м 3 (при 25 °С). Теплоёмкость 20,1 Дж/(моль∙К), теплопроводность 95,5 Вт/(м∙К), диэлектрическая проницаемость 12; твёрдость по Моосу 7. При обычных условиях кремний - хрупкий материал; заметная пластическая деформация наблюдается при температурах выше 800 °С. Кремний прозрачен для ИК-излучения с длиной волны больше 1 мкм (коэффициент преломления 3,45 при длине волны 2-10 мкм). Диамагнитен (магнитная восприимчивость - 3,9∙10 -6). Кремний - полупроводник, ширина запрещённой зоны 1,21 эВ (0 К); удельное электрическое сопротивление 2,3∙10 3 Ом∙м (при 25 °С), подвижность электронов 0,135-0,145, дырок - 0,048-0,050 м 2 /(В с). Электрические свойства кремния очень сильно зависят от наличия примесей. Для получения монокристаллов кремния с проводимостью р-типа используют легирующие добавки В, Al, Ga, In (акцепторные примеси), с проводимостью n-типа - Р, As, Sb, Bi (донорные примеси).

Кремний на воздухе покрывается оксидной плёнкой, поэтому при низких температурах химически инертен; при нагревании выше 400 °С взаимодействует с кислородом (образуются оксид SiO и диоксид SiO 2), галогенами (кремния галогениды), азотом (кремния нитрид Si 3 N 4), углеродом (кремния карбид SiC) и др. Соединения кремния с водородом - силаны - получают косвенным путём. Кремний взаимодействует с металлами с образованием силицидов.

Мелкодисперсный кремний - восстановитель: при нагревании взаимодействует с парами воды с выделением водорода, восстанавливает оксиды металлов до свободных металлов. Кислоты-неокислители пассивируют кремний вследствие образования на его поверхности нерастворимой в кислотах оксидной плёнки. Кремний растворяется в смеси концентрированной HNO 3 с HF, при этом образуется кремнефтороводородная кислота: 3Si + 4HNO 3 + 18HF = 3Н 2 + 4NO + 8Н 2 О. Кремний (особенно мелкодисперсный) взаимодействует со щелочами с выделением водорода, например: Si + 2NaOH + Н 2 О = Na 2 SiO 3 + 2Н 2 . Кремний образует различные кремнийорганические соединения.

Биологическая роль. Кремний относится к микроэлементам. Суточная потребность человека в кремнии 20-50 мг (элемент необходим для правильного роста костей и соединительных тканей). В организм человека кремний попадает с пищей, а также с вдыхаемым воздухом в виде пылеобразного SiO 2 . При длительном вдыхании пыли, содержащей свободный SiO 2 , возникает силикоз.

Получение . Кремний технической чистоты (95-98%) получают восстановлением SiO 2 углеродом или металлами. Высокочистый поликристаллический кремний получают восстановлением SiCl 4 или SiHCl 3 водородом при температуре 1000-1100 °С, термическим разложением Sil 4 или SiH 4 ; монокристаллический кремний высокой чистоты - зонной плавкой или по методу Чохральского. Объём мирового производства кремния около 1600 тысяч т/год (2003).

Применение . Кремний - основной материал микроэлектроники и полупроводниковых приборов; используется при изготовлении стёкол, прозрачных для ИК-излучения. Кремний является компонентом сплавов железа и цветных металлов (в малых концентрациях кремний повышает коррозионную стойкость и механическую прочность сплавов, улучшает их литейные свойства; в больших концентрациях может вызвать хрупкость); наибольшее значение имеют железные, медные и алюминиевые кремнийсодержащие сплавы. Кремний применяют в качестве исходного вещества для получения кремнийорганических соединений и силицидов.

Лит.: Баранский П. И., Клочков В. П., Потыкевич И. В. Полупроводниковая электроника. Свойства материалов: Справочник. К., 1975; Дроздов А. А., Зломанов В. П., Мазо Г. Н., Спиридонов Ф. М. Неорганическая химия. М., 2004. Т. 2; Шрайвер Д., Эткинс П. Неорганическая химия. М., 2004. Т. 1-2; Кремний и его сплавы. Екатеринбург, 2005.

Соединения Кремния, широко распространенные на земле, были известны человеку с каменного века. Использование каменных орудий для труда и охоты продолжалось несколько тысячелетий. Применение соединений Кремния, связанное с их переработкой, - изготовление стекла - началось около 3000 лет до н. э. (в Древнем Египте). Раньше других известное соединение Кремния - оксид SiO 2 (кремнезем). В 18 веке кремнезем считали простым телом и относили к "землям" (что и отражено в его названии). Сложность состава кремнезема установил И. Я. Берцелиус. Он же впервые, в 1825, получил элементарный Кремний из фтористого кремния SiF 4 , восстанавливая последний металлическим калием. Новому элементу было дано название "силиций" (от лат. silex - кремень). Русское название ввел Г. И. Гесс в 1834.

Распространение Кремния в природе. По распространенности в земной коре Кремний - второй (после кислорода) элемент, его среднее содержание в литосфере 29,5% (по массе). В земной коре Кремний играет такую же первостепенную роль, как углерод в животном и растительном мире. Для геохимии Кремния важна исключительно прочная связь его с кислородом. Около 12% литосферы составляет кремнезем SiO 2 в форме минерала кварца и его разновидностей. 75% литосферы слагают различные силикаты и алюмосиликаты (полевые шпаты, слюды, амфиболы и т. д.). Общее число минералов, содержащих кремнезем, превышает 400.

При магматических процессах происходит слабая дифференциация Кремния: он накапливается как в гранитоидах (32,3%), так и в ультраосновных породах (19%). При высоких температуpax и большом давлении растворимость SiO 2 повышается. Возможна его миграция и с водяным паром, поэтому для пегматитов гидротермальных жил характерны значительные концентрации кварца, с которым нередко связаны и рудные элементы (золото-кварцевые, кварцево-касситеритовые и других жилы).

Физические свойства Кремния. Кремний образует темно-серые с металлическим блеском кристаллы, имеющие кубическую гранецентрированную решетку типа алмаза с периодом а = 5.431Å, плотностью 2,33 г/см 3 . При очень высоких давлениях получена новая (по-видимому, гексагональная) модификация с плотностью 2,55 г/см 3 . Кремний плавится при 1417 °С, кипит при 2600 °С. Удельная теплоемкость (при 20-100 °С) 800 Дж/(кг·К), или 0,191 кал/(г·град); теплопроводность даже для самых чистых образцов не постоянна и находится в пределах (25 °С) 84-126 вт/(м·К), или 0,20-0,30 кал/(см·сек·град). Температурный коэффициент линейного расширения 2,33·10 -6 К -1 , ниже 120 К становится отрицательным. Кремний прозрачен для длинноволновых ИК-лучей; показатель преломления (для λ = 6 мкм) 3,42; диэлектрическая проницаемость 11,7. Кремний диамагнитен, атомная магнитная восприимчивость -0,13-10 -6 . Твердость Кремния по Моосу 7,0, по Бринеллю 2,4 Гн/м 2 (240 кгс/мм 2), модуль упругости 109 Гн/м 2 (10 890 кгс/мм 2), коэффициент сжимаемости 0,325·10 -6 см 2 /кг. Кремний хрупкий материал; заметная пластическая деформация начинается при температуре выше 800°С.

Кремний - полупроводник, находящий большое применение. Электрические свойства Кремния очень сильно зависят от примесей. Собственное удельное объемное электросопротивление Кремния при комнатной температуре принимается равным 2,3·10 3 ом·м (2,3·10 5 ом·см).

Полупроводниковый Кремний с проводимостью р-типа (добавки В, Al, In или Ga) и n-типа (добавки Р, Bi, As или Sb) имеет значительно меньшее сопротивление. Ширина запрещенной зоны по электрическим измерениям составляет 1,21 эв при 0 К и снижается до 1,119 эв при 300 К.

Химические свойства Кремния. В соответствии с положением Кремния в периодической системе Менделеева 14 электронов атома Кремния распределены по трем оболочкам: в первой (от ядра) 2 электрона, во второй 8, в третьей (валентной) 4; конфигурация электронной оболочки 1s 2 2s 2 2p 6 3s 2 3p 2 . Последовательные потенциалы ионизации (эв): 8,149; 16,34; 33,46 и 45,13. Атомный радиус 1,ЗЗÅ, ковалентный радиус 1,17Å, ионные радиусы Si 4+ 0,39Å, Si 4- 1,98Å.

В соединениях Кремний (аналогично углероду) 4-валентен. Однако, в отличие от углерода, Кремний наряду с координационным числом 4 проявляет координационное число 6, что объясняется большим объемом его атома (примером таких соединений являются кремнефториды, содержащие группу 2-).

Химическая связь атома Кремния с другими атомами осуществляется обычно за счет гибридных sр 3 -орбиталей, но возможно также вовлечение двух из его пяти (вакантных) 3d-орбиталей, особенно когда Кремний является шестикоординационным. Обладая малой величиной электроотрицательности, равной 1,8 (против 2,5 у углерода; 3,0 у азота и т. д.), Кремний в соединениях с неметаллами электроположителен, и эти соединения носят полярный характер. Большая энергия связи с кислородом Si - О, равная 464 кДж/молъ (111 ккал/молъ), обусловливает стойкость его кислородных соединений (SiO 2 и силикатов). Энергия связи Si - Si мала, 176 кДж/молъ (42 ккал/моль); в отличие от углерода, для Кремния не характерно образование длинных цепей и двойной связи между атомами Si. На воздухе Кремний благодаря образованию защитной оксидной пленки устойчив даже при повышенных температурах. В кислороде окисляется начиная с 400 °С, образуя оксид кремния (IV) SiO 2 . Известен также оксид кремния (II) SiO, устойчивый при высоких температурах в виде газа; в результате резкого охлаждения может быть получен твердый продукт, легко разлагающийся на тонкую смесь Si и SiO 2 . Кремний устойчив к кислотам и растворяется только в смеси азотной и фтористоводородной кислот; легко растворяется в горячих растворах щелочей с выделением водорода. Кремний реагирует с фтором при комнатной температуре, с остальными галогенами - при нагревании с образованием соединений общей формулы SiX 4 . Водород непосредственно не реагирует с Кремнием, и кремневодороды (силаны) получают разложением силицидов (см. ниже). Известны кремневодороды от SiH 4 до Si 8 H 18 (по составу аналогичны предельным углеводородам). Кремний образует 2 группы кислородсодержащих силанов - силоксаны и силоксены. С азотом Кремний реагирует при температуре выше 1000 °С, Важное практическое значение имеет нитрид Si 3 N 4 , не окисляющийся на воздухе даже при 1200 °С, стойкий по отношению к кислотам (кроме азотной) и щелочам, а также к расплавленным металлам и шлакам, что делает его ценным материалом для химической промышленности, для производства огнеупоров и других. Высокой твердостью, а также термической и химической стойкостью отличаются соединения Кремния с углеродом (карбид кремния SiC) и с бором (SiB 3 , SiB 6 , SiB 12). При нагревании Кремний реагирует (в присутствии металлических катализаторов, например меди) с хлорорганическими соединениями (например, с СН 3 Сl) с образованием органогалосиланов [например, Si(СН 3) 3 Cl], служащих для синтеза многочисленных кремнийорганических соединений.

Кремний образует соединения почти со всеми металлами - силициды (не обнаружены соединения только с Bi, Tl, Pb, Hg). Получено более 250 силицидов, состав которых (MeSi, MeSi 2 , Me 5 Si 3 , Me 3 Si, Me 2 Si и других) обычно не отвечает классическим валентностям. Силициды отличаются тугоплавкостью и твердостью; наибольшее практическое значение имеют ферросилиций (восстановитель при выплавке специальных сплавов, см. Ферросплавы) и силицид молибдена MoSi 2 (нагреватели электропечей, лопатки газовых турбин и т. д.).

Получение Кремния. Кремний технической чистоты (95-98%) получают в электрической дуге восстановлением кремнезема SiO 2 между графитовыми электродами. В связи с развитием полупроводниковой техники разработаны методы получения чистого и особо чистого Кремния Это требует предварительного синтеза чистейших исходных соединений Кремния, из которых Кремний извлекают путем восстановления или термического разложения.

Чистый полупроводниковый Кремний получают в двух видах: поликристаллический (восстановлением SiCl 4 или SiHCl 3 цинком или водородом, термическим разложением SiI 4 и SiH 4) и монокристаллический (бестигельной зонной плавкой и "вытягиванием" монокристалла из расплавленного Кремния - метод Чохральского).

Применение Кремния. Специально легированный Кремний широко применяется как материал для изготовления полупроводниковых приборов (транзисторы, термисторы, силовые выпрямители тока, тиристоры; солнечные фотоэлементы, используемые в космических кораблях, и т. д.). Поскольку Кремний прозрачен для лучей с длиной волны от 1 до 9 мкм, его применяют в инфракрасной оптике,

Кремний имеет разнообразные и все расширяющиеся области применения. В металлургии Кремний используется для удаления растворенного в расплавленных металлах кислорода (раскисления). Кремний является составной частью большого числа сплавов железа и цветных металлов. Обычно Кремний придает сплавам повышенную устойчивость к коррозии, улучшает их литейные свойства и повышает механическую прочность; однако при большем его содержании Кремний может вызвать хрупкость. Наибольшее значение имеют железные, медные и алюминиевые сплавы, содержащие Кремний. Все большее количество Кремния идет на синтез кремнийорганических соединений и силицидов. Кремнезем и многие силикаты (глины, полевые шпаты, слюды, тальки и т. д.) перерабатываются стекольной, цементной, керамической, электротехнической и других отраслями промышленности.

Кремний в организме находится в виде различных соединений, участвующих главным образом в образовании твердых скелетных частей и тканей. Особенно много Кремния могут накапливать некоторые морские растения (например, диатомовые водоросли) и животные (например, кремнероговые губки, радиолярии), образующие при отмирании на дне океана мощные отложения оксида кремния (IV). В холодных морях и озерах преобладают биогенные илы, обогащенные Кремнием, в тропич. морях - известковые илы с низким содержанием Кремния. Среди наземных растений много Кремния накапливают злаки, осоки, пальмы, хвощи. У позвоночных животных содержание оксида кремния (IV) в зольных веществах 0,1-0,5%. В наибольших количествах Кремний обнаружен в плотной соединительной ткани, почках, поджелудочной железе. В суточном рационе человека содержится до 1 г Кремния. При высоком содержании в воздухе пыли оксида кремния (IV) она попадает в легкие человека и вызывает заболевание - силикоз..

Кремний в организме. Кремний в организме находится в виде различных соединений, участвующих главным образом в образовании твердых скелетных частей и тканей. Особенно много Кремния могут накапливать некоторые морские растения (например, диатомовые водоросли) и животные (например, кремнероговые губки, радиолярии), образующие при отмирании на дне океана мощные отложения оксида кремния (IV). В холодных морях и озерах преобладают биогенные илы, обогащенные Кремнием, в тропич. морях - известковые илы с низким содержанием Кремния. Среди наземных растений много Кремния накапливают злаки, осоки, пальмы, хвощи. У позвоночных животных содержание оксида кремния (IV) в зольных веществах 0,1-0,5%. В наибольших количествах Кремний обнаружен в плотной соединительной ткани, почках, поджелудочной железе. В суточном рационе человека содержится до 1 г Кремния. При высоком содержании в воздухе пыли оксида кремния (IV) она попадает в легкие человека и вызывает заболевание - силикоз.

Кремний в свободном виде был выделен в 1811 Ж.Гей-Люссаком и Л.Тенаром при пропускании паров фторида кремния над металлическим калием, однако он не был описан ими как элемент. Шведский химик Й.Берцелиус в 1823 дал описание кремния, полученного им при обработке калиевой соли K 2 SiF 6 металлическим калием при высокой температуре. Новому элементу было дано название "силиций" (от лат. silex - кремень). Русское название "кремний" введено в 1834 году российским химиком Германом Ивановичем Гессом. В переводе c др.-греч. krhmnoz - "утес, гора".

Нахождение в природе, получение:

В природе кремний находится в виде диоксида и силикатов различного состава. Природный диоксид кремния встречается преимущественно в форме кварца, хотя существуют и другие минералы - кристобалит, тридимит, китит, коусит. Аморфный кремнезем встречается в диатомовых отложениях на дне морей и океанов - эти отложения образовались из SiO 2 , входившего в состав диатомовых водорослей и некоторых инфузорий.
Свободный кремний может быть получен прокаливанием с магнием мелкого белого песка, который по химическому составу является почти чистым оксидом кремния, SiO 2 +2Mg=2MgO+Si. В промышленности кремний технической чистоты получают, восстанавливая расплав SiO 2 коксом при температуре около 1800°C в дуговых печах. Чистота полученного таким образом кремния может достигать 99,9% (основные примеси - углерод, металлы).

Физические свойства:

Аморфный кремний имеет вид бурого порошка, плотность которого равна 2.0г/см 3 . Кристаллический кремний - темно-серое, блестящее кристаллическое вещество, хрупкое и очень твердое, кристаллизуется в решетке алмаза. Это типичный полупроводник (проводит электричество лучше, чем изолятор типа каучука, и хуже проводника - меди). Кремний хрупок, только при нагревании выше 800 °C он становится пластичным веществом. Интересно, что кремний прозрачен к инфракрасному излучению, начиная с длины волны 1.1 микрометр.

Химические свойства:

Химически кремний малоактивен. При комнатной температуре реагирует только с газообразным фтором, при этом образуется летучий тетрафторид кремния SiF 4 . При нагревании до температуры 400-500 °C кремний реагирует с кислородом с образованием диоксида, с хлором, бромом и иодом - с образованием соответствующих легко летучих тетрагалогенидов SiHal 4 . При температуре около 1000°C кремний реагирует с азотом образуя нитрид Si 3 N 4 , с бором - термически и химически стойкие бориды SiB 3 , SiB 6 и SiB 12 . С водородом кремний непосредственно не реагирует.
Для травления кремния наиболее широко используют смесь плавиковой и азотной кислот.
Отношение к щелочам...
Для кремния характерны соединения со степенью окисления +4 или -4.

Важнейшие соединения:

Диоксид кремния, SiO 2 - (кремниевый ангидрид) ...
...
Кремниевые кислоты - слабые, нерастворимые, образуются при добавлении кислоты в раствор силиката в виде геля (желатинообразное вещество). H 4 SiO 4 (ортокремниевая) и H 2 SiO 3 (метакремниевая, или кремниевая) существуют только в растворе и необратимо превращаются в SiO 2 при нагревании и высушивании. Получающийся твердый пористый продукт - силикагель , имеет развитую поверхность и используется как адсорбент газов, осушитель, катализатор и носитель катализаторов.
Силикаты - соли кремниевых кислот в большинстве своем (кроме силикатов натрия и калия) нерастворимы в воде. Свойства....
Водородные соединения - аналоги углеводородов, силаны , соединения, в которых атомы кремния соединены одинарной связью, силены , если атомы кремния соединены двойной связью. Подобно углеводородам эти соединения образуют цепи и кольца. Все силаны могут самовозгораться, образуют взрывчатые смеси с воздухом и легко реагируют с водой.

Применение:

Наибольшее применение кремний находит в производстве сплавов для придания прочности алюминию, меди и магнию и для получения ферросилицидов, имеющих важное значение в производстве сталей и полупроводниковой техники. Кристаллы кремния применяют в солнечных батареях и полупроводниковых устройствах - транзисторах и диодах. Кремний служит также сырьем для производства кремнийорганических соединений, или силоксанов, получаемых в виде масел, смазок, пластмасс и синтетических каучуков. Неорганические соединения кремния используют в технологии керамики и стекла, как изоляционный материал и пьезокристаллы

Для некоторых организмов кремний является важным биогенным элементом. Он входит в состав опорных образований у растений и скелетных - у животных. В больших количествах кремний концентрируют морские организмы - диатомовые водоросли, радиолярии, губки. Большие количества кремния концентрируют хвощи и злаки, в первую очередь - подсемейства Бамбуков и Рисовидных, в том числе - рис посевной. Мышечная ткань человека содержит (1-2)·10 -2 % кремния, костная ткань - 17·10 -4 %, кровь - 3,9 мг/л. С пищей в организм человека ежедневно поступает до 1 г кремния.

Антонов С.М., Томилин К.Г.
ХФ ТюмГУ, 571 группа.



Рассказать друзьям