Как на земле происходит биологический круговорот. Геохимия биосферы

💖 Нравится? Поделись с друзьями ссылкой

Доводилось мне читать литературу, где описывалась «модная тенденция» в науке XVI–XVII столетия - создание вечного двигателя. Эта мечта так и осталась неосуществимой, но идея, по-моему, срисована с природы. Круговорот живого и неживого происходит постоянно. Кто-то скажет, что через миллиарды лет Земля исчезнет, а я бы возразила, ведь из останков нашей галактики образуется новая. Наша Вселенная и есть вечный двигатель.

В чем суть биологического круговорота веществ

На Земле беспрерывно происходит два типа круговорота: биотический и абиотический.

Вещества сами по себе не являются живыми и одинаково принимают участие в обоих циклах, но как только оказываются внутри живого организма, то его можно считать участником биологического круговорота.

Элементы, участвующие в биологическом цикле:

  • минеральные вещества;
  • газы;
  • вода.

Спектр веществ очень широкий. Условно их можно поделить на жизненно необходимые для организмов (вода, кислород, азот, углекислота) и несущие живому ущерб.

Процесс циркуляция веществ

Независимо от вредности или полезности любое вещество когда-то приходит в организм и однажды его покидает.

В случае с водой циркуляция происходит постоянно. Например, организм человека за день выводит около 6 литров, но мы не теряем свой вес за счет постоянного пополнения водных запасов. Испарившись из тела, молекулы воды устремляются к облакам, выпадают в виде дождя, попадают в водопровод и снова оказываются в организме.

По аналогичному принципу через любой живой организм проходят минеральные вещества и газы.

Циркуляция воздуха происходит интенсивнее всего: за сутки человек вдыхает 13 тыс. литров воздуха содержащего 20% кислорода, который на выдохе преобразуется в углекислоту. Тем не менее, благодаря растениям излишков углекислого газа в природе не наблюдается, они используют его во время фотосинтеза.

Некоторые вещества накапливаются в организме и не выводятся оттуда до самой смерти, они обычно наносят ущерб живому организму. Примерами таких веществ могут быть канцерогены, что вдыхаются курильщиками.

Все вещества на планете находятся в процессе кругово­рота. Солнечная энергия вызывает на Земле два круговоро­та веществ: большой (геологический, биосферный) и малый (биологический).

Большой круговорот веществ в биосфере характеризует­ся двумя важными моментами: он осуществляется на про­тяжении всего геологического развития Земли и представ­ляет собой современный планетарный процесс, принимаю­щий ведущее участие в дальнейшем развитии биосферы.

Геологический круговорот связан с образованием и раз­рушением горных пород и последующим перемещением продуктов разрушения - обломочного материала и хими­ческих элементов. Значительную роль в этих процессах иг­рали и продолжают играть термические свойства поверх­ности суши и воды: поглощение и отражение солнечных лу­чей, теплопроводность и теплоемкость. Неустойчивый гид­ротермический режим поверхности Земли вместе с плане­тарной системой циркуляции атмосферы обусловливал гео­логический круговорот веществ, который на начальном этапе развития Земли, наряду с эндогенными процессами, был связан с формированием континентов, океанов и совре­менных геосфер. Со становлением биосферы в большой кру­говорот включились продукты жизнедеятельности орга­низмов. Геологический круговорот поставляет живым ор­ганизмам элементы питания и во многом определяет усло­вия их существования.

Главные химические элементы литосферы: кислород, кремний, алюминий, железо, магний, натрий, калий и дру­гие - участвуют в большом круговороте, проходя от глу­бинных частей верхней мантии до поверхности литосферы. Магматическая порода, возникшая при кристаллизации магмы, поступив на поверхность литосферы из глубин Зем­ли, подвергается разложению, выветриванию в области био­сферы. Продукты выветривания переходят в подвижное состояние, сносятся водами, ветром в пониженные места рельефа, попадают в реки, океан и образуют мощные толщи осадочных пород, которые со временем, погружаясь на глу­бину в областях с повышенной температурой и давлением, подвергаются метаморфозу, т. е. «переплавляются». При этой переплавке возникает новая метаморфическая порода, поступающая в верхние горизонты земной коры и вновь входящая в круговорот веществ (рис.).


Наиболее интенсивному и быстрому круговороту подвер­гаются легкоподвижные вещества - газы и природные во­ды, составляющие атмосферу и гидросферу планеты. Зна­чительно медленнее совершает круговорот материал литос­феры. В целом каждый круговорот любого химического элемента является частью общего большого круговорота ве­ществ на Земле, и все они тесно связаны между собой. Жи­вое вещество биосферы в этом круговороте выполняет ог­ромную работу по перераспределению химических элемен­тов, беспрерывно циркулирующих в биосфере, переходя из внешней среды в организмы и снова во внешнюю среду.

Малый, или биологический, круговорот веществ - это

циркуляция веществ между растениями, животными, гриба­ми, микроорганизмами и почвой. Суть биологического круго­ворота заключается в протекании двух противоположных, но взаимосвязанных процессов - создания органических ве­ществ и их разрушения. Начальный этап возникновения ор­ганических веществ обусловлен фотосинтезом зеленых расте­ний, т. е. образованием живого вещества из углекислого газа, воды и простых минеральных соединений с использованием энергии Солнца. Растения (продуценты) извлекают из почвы в растворе молекулы серы, фосфора, кальция, калия, маг­ния, марганца, кремния, алюминия, цинка, меди и других элементов. Растительноядные животные (консументы I по­рядка) поглощают соединения этих элементов уже в виде пи­щи растительного происхождения. Хищники (консументы II порядка) питаются растительноядными животными, потреб­ляя пищу более сложного состава, включающую белки, жи­ры, аминокислоты и другие вещества. В процессе разруше­ния микроорганизмами (редуцентами) органических ве­ществ отмерших растений и останков животных, в почву и водную среду поступают простые минеральные соединения, доступные для усвоения растениям, и начинается следую­щий виток биологического круговорота (рис. 33).


Возникновение и развитие ноосферы

Эволюция органического мира на Земле прошла несколько этапов.Первый –связан с возникновением биологического круговорота веществ в биосфере. Второй- сопровождался формированием многоклеточных организмов. Эти два этапа называют биогенезом.Третий этап связан с появлением человеческого общества, под влиянием которого в современных условиях происходит эволюция биосферы и превращение ее в сферу разума-ноосферу(от гр.-разум,-шар). Ноосфера- новое состояние биосферы, когда разумная деятельность человека становится главным фактором, обуславливающим ее развитие. Термин «»ноосфера» был введен Э. Леруа. В. И. Вернадский углубил и развил учение о ноосфере. Он писал: «Ноосфера есть новое геологическое явление на нашей планете.В ней человек становится крупной геологической силой». В. И. Вернадский выделил необходимые предпосылки для создания ноосферы:1.Человечество стало единым целым.2.Возможность мгновенного обмена информацией.3.Реальное равенство людей.4.Рост общего уровня жизни.5.Использование новых видов энергии. 6.Исключение войн из жизни общества. Создание этих предпосылок становится возможным в результате взрыва научной мысли в ХХ веке.

Тема – 6. Природа – человек: системный подход. Цель лекции: Сформировать целостное представление о системных постулатах экологии.

Основные вопросы:1.Понятие о системе и о сложных биосистемах.2.Особенности биологических систем.3.Системные постулаты: закон всеобщей связи, экологические законы Б. Коммонера, Закон больших чисел, Принцип Ле Шателье, Закон обратной связи в природе и закон константности количества живого вещества.4.Модели взаимодействий в системах «природа- человек» и « человек-экономика-биота-среда».

Экологическая система – главный объект экологии. Экология по своей сущности системна и в теоретическом облике близка к общей теории систем. Согласно общей теории систем система- это реальная или мыслимая совокупность частей, целостные свойства которой определяются взаимодействием между частями (элементами) системы. В реальной жизни,систему определяют как совокуность объектов, объединенных некоторой формой регулярного взаимодействий или взаимозависимости для выполнения заданной функции. В материальном существуют определенные иерархии-упорядоченные последовательности пространственно-временного соподчинения и усложнения систем. Все многообразия нашего мира представить в виде трех последовательно возникших иерархий. Это основная,природная, физико- химико- биологическая(Ф,Х,Б) иерархия и побочные две, возникшие на ее основе, социальная (С) и техническая (Т) иерархии. Существование последних по совокупно­сти обратных связей определенным образом влияет на основную иерархию. Объединение систем из разных иерархий приводит к «смешанным» классам систем. Так, объединение систем из физико-химической части иерархии (Ф, X - «среда») с живыми системами биологической части иерархии (Б - «биота») приводит к смешан­ному классу систем, называемых экологическими. А объединение систем из иерархий С

(«человек») и Т («техника») приводит к клас­су хозяйственных, или технико-экономических, систем.

Рис. . Иерархии материальных систем:

Ф, X - физико-химическая, Б - биологическая, С - социальная, Т - техническая

Должно быть понятно, что отображенное на схеме воздействие человеческого общества на природу, опосредованное техникой и технологиями (техногенез), относится ко всей иерархии природных систем: нижняя ветвь - к абиотической среде, верхняя - к биоте биосферы. Ниже будет рассмотрена сопряженность экологических и технико-экономических сторон этого взаимодействия.

Всем системам присущи некоторые общие свойства:

1. Каждая система имеет определенную структуру, определяе­мую формой пространственно-временных связей или взаимодейст вий между элементами системы. Структурная упорядоченность сама по себе не определяет организацию системы. Систему можно на­звать организованной, если ее существование либо необходимо для поддержания некоторой функциональной (выполняющей опреде­ленную работу) структуры, либо, напротив, зависит от деятельности такой структуры.

2. Согласно принципу необходимого разнообразия система не мо­жет состоять из идентичных элементов, лишенных индивидуально­сти. Нижний предел разнообразия - не менее двух элементов (про­тон и электрон, белок и нуклеиновая кислота, «он» и «она»), верх­ний - бесконечность. Разнообразие - важнейшая информацион­ная характеристика системы. Оно отличается от числа разновидно­стей элементов и может быть измерено.3.Свойства системы невозможно постичь лишь на основании свойств ее частей. Решающее значение имеет именно взаимодейст­вие между элементами. По отдельным деталям машины перед сбор­кой нельзя судить о ее действии. Изучая по отдельности некоторые формы грибов и водорослей, нельзя предсказать существование их симбиоза в виде лишайника. Совместное действие двух или более различных факторов на организм почти всегда отличается от суммы их раздельных эффектов. Степень несводимости свойств системы к сумме свойств отдельных элементов, из которых она состоит, опре­деляет эмерджентность системы.

4.Выделение системы делит ее мир на две части - саму систе­му и ее среду. В зависимости от наличия (отсутствия) обмена веще­ством, энергией и информацией со средой принципиально возмож­ны: изолированные системы (никакой обмен невозможен); замкну­тые системы (невозможен обмен веществом); открытые системы(возможен обмен веществом и энергией). Обмен энергии определя­ет обмен информацией. В живой природе существуют только от­крытые динамические системы, между внутренними элементами ко­торых и элементами среды осуществляются переносы вещества, энергии и информации. Любая живая система - от вируса до биосферы - представляет собой открытую динамическую систему.

5. Преобладание внутренних взаимодействий в системе над внешними и лабильность системы по отношению к внешним воз­
действиям определяют ее способность к самосохранению благодаря качествам организованности, выносливости и устойчивости. Внеш­нее воздействие на систему, превосходящее силу и гибкость еевнутренних взаимодействий, приводит к необратимым изменениям
и гибели системы. Устойчивость динамической системы поддержи­вается непрерывно выполняемой ею внешней циклической работой. Для этого необходимы поток и преобразование энергии в сие. теме. Вероятность достижения главной цели системы - самосохранения (в том числе и путем самовоспроизведения) определяется кaк ее потенциальная эффективность.

6. Действие системы во времени называют ее поведением. Вызванное внешним фактором изменение поведения обозначают как реакцию системы, а изменение реакции системы, связанное с изменением структуры и направленное на стабилизацию поведения, -.как ее приспособление, или адаптацию. Закрепление адаптивных изменений структуры и связей системы во времени, при котором ее потенциальная эффективность увеличивается, рассматривается кaк развитие, или эволюция, системы. Возникновение и существование всех материальных систем в природе обусловлено эволюцией. Динамические системы эволюционируют в направлении от более вероятной к менее вероятной организации, т.е. развитие идет по пути усложнения организации и образования подсистем в структуре системы. В природе все формы поведения систем - от элементарной реакции до глобальной эволюции - существенно нелинейны. Важной особенностью эволюции сложных систем является
неравномерность, отсутствие монотонности. Периоды постепенного накопления незначительных изменений иногда прерываются резкими качественными скачками, существенно меняющими свойства системы. Обычно они связаны с так называемыми точками бифуркации - раздвоением, расщеплением прежнего пути эволюции. 0т выбора того или иного продолжения пути в точке бифуркации очень многое зависит, вплоть до появления и процветания нового мира частиц, веществ, организмов, социумов или, наоборот, гибели системы. Даже для решающих систем результат выбора часто непредсказуем, а сам выбор в точке бифуркации может быть обусловлен случайным импульсом. Любая реальная система может быть представлена в виде некоторого материального подобия или знакового образа, т.е. соответственно аналоговой или знаковой моделью системы. Моделирование неизбежно сопровождается некоторым упрощением и формализацией взаимосвязей в системе. Эта формализация может быть
осуществлена в виде логических (причинно-следственных) и/или математических (функциональных) отношений.По мере возрастания сложности систем у них появляются новые эмерджентные качества. При этом сохраняются качества более простых систем. Поэтому общее разнообразие качеств системы возрастает по мере ее усложнения (рис. 2.2).

Рис. 2.2. Закономерности изменений свойств иерархий систем с повышением их уровня (по Флейшману, 1982):

1 - разнообразие, 2 - устойчивость, 3 - эмерджентность, 4 - сложность, 5 - неидентичность, 6 - распространенность

В порядке возрастания активности по отношению к внешним воз­действиям качества системы могут быть упорядочены в следующей последовательности: 1 - устойчивость, 2 - надежность, обусловлен­ная информированностью о среде (помехоустойчивость), 3 - управляемость, 4 - самоорганизация. В этом ряду каждое последующее ка­чество имеет смысл при наличии предыдущего.

Пар Сложность структуры системы опреде­ляется числом п ее элементов и числом т

связей между ними. Если в какой-либо системе исследуется число частных дискретных состояний, то сложность системы С определя­ется логарифмом числа связей:

C=lgm. (2.1)

Системы условно классифицируются по сложности следующим образом: 1) системы, имеющие до тысячи состояний (О < 3), относятся к простым; 2) системы, имеющие до миллиона состояний (3 < С < 6), являют собой сложные системы; 3) системы с числом состояний свыше миллиона (С > 6) идентифицируются как очень сложные.

Все реальные природные биосистемы очень сложны. Даже в структуре единичного вируса число биологически значимых моле­кулярных состояний превышает последнее значение.

Под биологическим круговоротом веществ понимают поступления веществ и химических элементов из почвы и атмосферы в живых организмов, образование в этих телах новых сложных соединений и их возвращения из организмов или продуктов их разложения в почве и атмосферы (рис. 22). Биологический круговорот веществ - сложный процесс взаимосвязи и взаимодействия живых организмов как между собой, так и с окружающей средой. Он состоит из циклов разной продолжительности, которые по-разному влияют на ландшафт. Различают сезонные, годовые, многолетние и вековые циклы биологического круговорота. Лучше выражены годовые циклы круговорота, которые состоят из потребления элементов питания отдельными организмами или их формациями, а также постепенного возвращения вновь органических веществ в окружающую среду.

Главным источником энергии биологического круговорота является солнечная энергия. Благодаря солнечному излучению в биосфере осуществляется один из самых грандиозных процессов - фотосинтез. Растения поглощают энергию солнечного света, с ее помощью усваивают в своих листьях углекислоту и воду, раскладывая их на простые химические элементы. При этом углерод и водород растения используют на построение своих органических тел, а кислород, главным образом, выделяется ими в атмосферу. При участии кислорода происходит один из важнейших жизненных процессов - дыхание. Не меньшее значение имеет и другой процесс, в котором участвует кислород, - тление и гниение растений, расписание мертвых животных. При этом сложные органические соединения превращаются в более простые (углекислый газ, воду, азот таш.) Так завершается биологический круговорот веществ. Элементы, которые высвободились в процессе круговорота веществ, служат исходным материалом для следующего цикла круговорота.

Рис. 22.

Общее количество органического вещества в экосистемах определяется, главным образом, природными особенностями территории. Максимум накопления биомассы наблюдается в лесных биоценозах (табл. 9). Во влажных тропических лесах эта величина достигает 5000 ц / га и более. Значительно меньше биомасса широколиственных и особенно хвойных лесов бореального пояса (1000-3300 Ц / га). Еще меньшую биомассу имеют травяные группировки. Так, луговые степи дают в среднем 250 ц / га, а сухие степи - всего 100 ц / га.

Обращает на себя внимание отсутствие прямой зависимости между биомассой (общим количеством живого органического вещества в наземной и подземной сферах растительных сообществ) и осадков, то есть количеством ежегодно отмирающей органического вещества на единицу площади. Так, в луговых степях ежегодный опад в два-три раза превышает количество опада широколиственных лесов, хотя биомасса первых в 16 раз меньше биомассу этих лесов.


Таблица 9. Показатели биологической продуктивности основных типов растительности (по Л.Е. Родиным, Н.И. Базилевич, 1965)

Типы растительности

Общее количество биомассы, ц / га

Годовой прирост, ц / га

Опад, ц / га

Лесная подстилка или травяные остатки прошлых лет, ц / га

Отношение подстилки в опада зеленой части

Арктические тундры

Кустарниковые тундры

Ельники северной тайги

Ельники средней тайги

Ельники южной тайги

Степи луговые

Степи сухие

Пустынные

Субтропические лиственные леса

Влажные тропические леса

Но не вся отмирающая органическое вещество подвергается преобразования, часть его накапливается на поверхности почвы в виде подстилки или травяной войлока. Больше накопления надземной органического вещества наблюдается в кустарниковых тундрах. Накопление здесь подстилки свидетельствует о низком уровне процессов разложения органического вещества, то есть об ослаблении высвобождения энергии. В степях, саваннах и влажных тропических лесах, наоборот, весь опад очень быстро минерализируется. Таким образом, по отношению массы подстилки количеству опада зеленой части можно судить об интенсивности разложения органического вещества.

Вместе с круговоротом органического вещества в процессе жизнедеятельности растительных организмов происходит круговорот химических элементов, избирательно захваченных растениями из атмосферы, гидросферы и литосферы. Накопление и динамика азота и зольных элементов в биологическом круговороте определяется производительностью растительных сообществ, процентным содержанием и химическим составом золы растений, которые составляют биоценоз.

Наибольшее количество азота и зольных элементов содержится в растительности влажных тропических лесов (более 10 000 кг / га), значительным е содержание химических элементов в широколиственных лесах умеренного пояса (5800 кг / га). В биомассе травянистой растительности по сравнению с древесной, содержание азота и зольных элементов снижается, но не пропорционально изменению количества биомассы, поскольку, накапливая меньшую биомассу, травянистая растительность имеет более высокую зольность, чем лесная растительность. Поэтому в степной зоне в почву ежегодно поступает в 5 раз больше химических элементов, чем в ельниках южной тайги, и в 2,5 раза больше, чем в дубравах.

Обобщая важнейшие черты биологического круговорота, необходимо отметить, что в географическом аспекте от тундры в тайгу, широколиственных лесов и степей происходит увеличение величины годового прироста растений, а также активизируется интенсивность биологического круговорота от азотного через азотно-кальциевый к азотно-кремниевого. В пустынях годовая продукция органического вещества резко снижается. В ее биологическом цикле вместе с азотом существенную роль играют галогены - хлор и натрий.

В поясе влажных субтропиков и тропиков годовой прирост, емкость биологического круговорота возрастает до максимальных величин. Биологический круговорот характеризуется высокой интенсивностью, преобладанием азотно-кремниевого типа химизма с участием алюминия, железа, марганца. Кремниевые типы химизма особенно распространены в экваториальном поясе. Они характерны для тропических лесов, саванн, редколесий, травянисто-древесных формаций тугайного типа; в умеренном поясе - свойственные внутриконтинентальных степным областям.

Итак, согласно ростом влияния солнечной энергии на поверхность Земли от северных широт до южных происходит увеличение биологической продуктивности, интенсивности и разнообразия типов химизма биологического круговорота элементов.

Круговорот элементов в неживой природе

Круговорот веществ в большом геологическом круговороте.

Большой геологический круговорот

Большой геологический круговорот минеральных веществ и воды протекает под действием огромного количества абиотических факторов.

Согласно теории литосферных плит, внешняя оболочка Земли состоит из нескольких очень больших блоков (плит). Эта теория предполагает существование горизонтальных перемещений мощных литосферных плит, толщиной 100 – 150 км.

При этом в пределах срединно-океанических хребтов, так называемой зоны рифтов. Происходят разрыв и раздвигание литосферных плит с образованием молодой океанической коры

Это явление называется спредингом океанического дна. Т.о., из глубин мантии поднимается поток минеральных веществ, образующий молодые кристаллические породы.

В противовес этому процессу в зоне глубоководных океанических желобов постоянно происходит надвигание одной части континентальной коры на другую, что сопровождается погружением периферийной части плиты в мантию, т.е., часть твёрдого вещества земной коры переходит в состав мантии Земли. Процесс, происходящий в океанических глубоководных желобах, назван субдукцией океанической коры.

Круговорот воды на планете действует непрерывно и повсеместно. Движущие силы круговорота воды – тепловая энергия и сила тяжести. Под влиянием тепла происходят испарение, конденсация водяных паров и другие процессы, на что расходуется около 50% энергии, поступающей от солнца. Под влиянием силы тяжести – падение капель дождя, течение рек, движение почвенных и подземных вод. Часто эти причины действуют совместно, например, на атмосферную циркуляцию воды действуют как тепловые процессы, так и сила тяжести.

Осуществляется двумя путями: водной и воздушной миграцией. К воздушным мигрантам относят: кислород, водород, азот, йод.

К водным мигрантам относят те вещества, которые мигрируют преимущественно в почвах, поверхностных и подземных водах в основном в виде молекул и ионов: натрий, магний, алюминий, кремний, фосфор, сера, хлор, калий, марганец, железо, кобальт, никель, стронций, свинец и др. Воздушные мигранты входят также в состав солей, которые мигрируют в воде. Однако воздушная миграция для них более типична.

Масса живого вещества биосферы сравнительно мала. Если её распределить по земной поверхности, то получиться слой всего в 1,5 см. В таблице 4.1 сопоставлены некоторые количественные характеристики биосферы и других геосфер Земли. Биосфера, составляя менее 10-6 массы других оболочек планеты, обладает несравненно большим разнообразием и обновляет свой состав в миллион раз быстрее.



Таблица 4.1

Сравнение биосферы с другими геосферами Земли

*Живое вещество в расчёте на живой вес

4.4.1. Функции биосферы

Благодаря биоте биосферы осуществляется преобладающая часть химических превращений на планете. Отсюда суждение В.И. Вернадского об огромной преобразующей геологической роли живого вещества. На протяжении органической эволюции живые организмы тысячекратно (для разных круговоротов от 103 до 105 раз) пропустили через себя, через свои органы, ткани, клетки, кровь всю атмосферу, весь объём Мирового океана, большую часть массы почв, огромную массу минеральных веществ. И не только пропустили, но и в соответствии со своими потребностями видоизменили земную среду.

Благодаря способности трансформировать солнечную энергию в энергию химических связей растения и другие организмы выполняют ряд фундаментальных биогеохимических функций планетарного масштаба.

Газовая функция. Живые существа постоянно обмениваются кислородом и углекислым газом с окружающей средой в процессах фотосинтеза и дыхания. Растения сыграли решающую роль в смене восстановительной среды на окислительную в геохимической эволюции планеты и в формировании газового состава современной атмосферы. Растения строго контролируют концентрации О2 и СО2, оптимальные для совокупности всех современных живых организмов.

Концентрационная функция. Пропуская через своё тело большие объёмы воздуха и природных растворов, живые организмы осуществляют биогенную миграцию (движение химических веществ) и концентрирование химических элементов и их соединений. Это относится к биосинтезу органики, образование коралловых островов, строительство раковин и скелетов, появление толщ осадочных известняков, месторождений некоторых металлических руд, скопление железно–марганцевых конкреций, на дне океана т. д. Ранние этапы биологической эволюции проходили в водной среде. Организмы научились извлекать из разбавленного водного раствора необходимые для них вещества, многократно увеличивая их концентрацию в своём теле.

Окислительно – восстановительная функция живого вещества тесно связана с биогенной миграцией элементов и концентрированием веществ. Многие вещества в природе устойчивы и не подвергаются окислению при обычных условиях, например, молекулярный азот – один из важнейших биогенных элементов. Но живые клетки располагают настолько мощными катализаторами – ферментами, что способны осуществлять многие окислительно-восстановительные реакции в миллионы раз быстрее, чем это может проходить в абиотической среде.

Информационная функция живого вещества биосферы. Именно с появлением первых примитивных живых существ на планете появилась и активная («живая») информация, отличающаяся от той «мёртвой» информации, которая является простым отражением структуры. Организмы оказались способными к получению информации путём соединения потока энергии с активной молекулярной структурой, играющей роль программы. Способность воспринимать, хранить и перерабатывать молекулярную информацию совершила опережающую эволюцию в природе и стала важнейшим экологическим системообразующим фактором. Суммарный запас генетической информации биоты оценивается в 1015 бит. Общая мощность потока молекулярной информации, связанной с обменом веществ и энергии во всех клетках глобальной биоты достигает 1036 бит/с (Горшков и др., 1996).

4.4.2. Составляющие биологического круговорота.

Биологический круговорот осуществляется между всеми составляющими биосферы (т. е. между почвой, воздухом, водой, животными, микроорганизмами и т.д.). Он происходит при обязательном участии живых организмов.

Достигающее биосферы солнечное излучение несёт в себе энергию около 2,5*1024 Дж в год. Только 0,3% её непосредственно преобразуется в процессе фотосинтеза в энергию химических связей органических веществ, т.е. вовлекается в биологический круговорот. А 0,1 – 0,2 % солнечной энергии, падающей на Землю, оказывается заключённой в чистой первичной продукции. Дальнейшая судьба этой энергии связана с передачей органического вещества пищи по каскадам трофических цепей.

Биологический круговорот условно можно разделить на взаимосвязанные составляющие: круговорот веществ и энергетический круговорот.

4.4.3. Энергетический круговорот. Трансформация энергии в биосфере

Экосистему можно описать как совокупность живых организмов, обменивающихся непрерывно энергией, веществом, информацией. Энергию можно определить как способность производить работу. Свойства энергии, в том числе и движение энергии в экосистемах, описываются законами термодинамики.

Первый закон термодинамики или закон сохранения энергии утверждает, что энергия не исчезает и не создаётся заново, она лишь переходит из одной формы в другую.

Второй закон термодинамики утверждает, что в замкнутой системе энтропия может только возрастать. Применительно к энергии в экосистемах удобна следующая формулировка: процессы, связанные с превращением энергии, могут происходить самопроизвольно только при условии, что энергия переходит из концентрированной формы в рассеянную, то есть деградирует. Мера количества энергии, которая становится недоступной для использования, или иначе мера изменения упорядоченности, которая происходит при деградации энергии, есть энтропия. Чем выше упорядоченность системы, тем меньше её энтропия.

Говоря другими словами, живое вещество получает и трансформирует энергию космоса, солнца в энергию земных процессов (химическую, механическую, тепловую, электрическую). Вовлекает эту энергию и неорганическую материю в непрерывный круговорот веществ в биосфере. Поток энергии в биосфере имеет одно направление – от Солнца через растения (автотрофы) к животным (гетеротрофы). Природные нетронутые экосистемы в устойчивом состоянии с постоянными важнейшими экологическими показателями (гомеостаз), являются наиболее упорядоченными системами, и характеризуются наименьшей энтропией.

4.4.4. Круговорот веществ в живой природе

Образование живого вещества и его разложение – две стороны единого процесса, который называется биологическим круговоротом химических элементов. Жизнь – круговорот химических элементов между организмами и средой.

Причина круговорота – ограниченность элементов, из которых строятся тела организмов. Каждый организм извлекает из окружающей среды необходимые для жизнедеятельности вещества и возвращает неиспользованные. При этом:

одни организмы потребляют минеральные вещества непосредственно из окружающей среды;

другие используют продукты, переработанные и выделенные первыми;

третьи – вторыми и т.д., пока вещества не возвратятся в окружающую среду в первоначальном состоянии.

В биосфере очевидна необходимость сосуществования различных организмов, способных использовать продукты жизнедеятельности друг друга. Мы видим практически безотходное биологическое производство.

Круговорот веществ в живых организмах условно можно свести к четырём процессам:

1.Фотосинтез. В результате фотосинтеза растения усваивают и аккумулируют солнечную энергию и синтезируют из неорганических веществ органические вещества - первичную биологическую продукцию - и кислород. Первичная биологическая продукция отличается большим разнообразием – содержит углеводы (глюкозу), крахмал, клетчатку, белки, жиры.

Схема фотосинтеза простейшего углевода (глюкозы) имеет следующую схему:

Этот процесс протекает только днём и сопровождается увеличением массы растений.

На Земле ежегодно в результате фотосинтеза образуется около 100 млрд. т. органического вещества, усваивается около 200 млрд. т. углекислого газа, выделяется примерно 145 млрд. т кислорода.

Фотосинтезу принадлежит решающая роль в обеспечении существования жизни на Земле. Его глобальное значение объясняется тем, что фотосинтез является единственным процессом, в ходе которого энергия в термодинамическом процессе согласно с минималистским принципом не рассеивается, а наоборот – накапливается.

Синтезируя необходимые для построения белков аминокислоты, растения могут существовать относительно независимо от других живых организмов. В этом проявляется автотрофность растений (самостоятельность в питании). В то же время зелёная масса растений и кислород, образующийся в процессе фотосинтеза, являются основой для поддержания жизни следующей группы живых организмов – животных, микроорганизмов. В этом проявляется гетеротрофность этой группы организмов.

2. Дыхание. Процесс обратный фотосинтезу. Происходит во всех живых клетках. При дыхании органическое вещество окисляется кислородом, в результате образуется углекислый газ, вода и выделяется энергия.

3. Пищевые (трофические) связи между автотрофными и гетеротрофными организмами. В данном случае происходит перенос энергии и вещества по звеньям пищевой цепи, которые более подробно были нами рассмотрены ранее.

4. Процесс транспирации. Один из самых важных процессов в биологическом круговороте.

Схематично его можно описать следующим образом. Растения поглощают почвенную влагу корнями. При этом в них поступают растворённые в воде минеральные вещества, которые усваиваются, а влага более или менее интенсивно испаряется в зависимости от условий среды.

4.4.5. Биогеохимические циклы

Геологический и биологический круговороты связаны – они существуют как единый процесс, рождая циркуляцию веществ, так называемые биогеохимические циклы (БГХЦ). Этот круговорот элементов обусловлен синтезом и распадом органических веществ в экосистеме (рис.4.1) В БГХЦ задействованы не все элементы биосферы, а только биогенные. Из них состоят живые организмы, эти элементы вступают в многочисленные реакции и участвуют в процессах, протекающих в живых организмах. В процентном соотношении совокупная масса живого вещества биосферы состоит из следующих основных биогенных элементов: кислорода – 70%, углерода – 18%, водорода – 10,5%, кальция – 0,5%, калия – 0,3%, азот – 0,3%, (кислород, водород, азот, углерод присутствуют во всех ландшафтах и являются основой живых организмов – 98%).

Сущность биогенной миграции химических элементов.

Таким образом, в биосфере имеют место биогенный круговорот веществ (т.е. круговорот, вызванный жизнедеятельностью организмов) и однонаправленный поток энергии. Биогенная миграция химических элементов определяется в основном двумя противоположными процессами:

1. Образование живого вещества из элементов окружающей среды за счет солнечной энергии.

2. Разрушение органических веществ, сопровождающееся выделением энергии. При этом элементы минеральных веществ многократно попадают в живые организмы, входя тем самым в состав сложных органических соединений, форм, а затем при разрушении последних снова приобретают минеральную форму.

Существуют элементы, входящие в состав живых организмов, но не относящиеся к биогенным. Такие элементы классифицируются по их весовой доле в организмах:

Макроэлементы – составляющие не менее 10-2% массы;

Микроэлементы – составляющие от 9*10-3 до 1*10-3% массы;

Ультрамикроэлементы – менее 9*10-6% массы;

Чтобы определить место биогенных элементов среди других химических элементов биосферы, рассмотрим принятую в экологии классификацию. По проявляемой активности в процессах, протекающих в биосфере, все химические элементы делят на 6 групп:

Благородные газы – гелий, неон, аргон, криптон, ксенон. Инертные газы в состав живых организмов не входят.

Благородные металлы – рутений, радий, палладий, осмий, иридий, платина, золото. Эти металлы почти не создают соединений в земной коре.

Циклические или биогенные элементы (их ещё называют миграционными). На эту группу биогенных элементов в земной коре приходится 99,7% всей массы, а на остальные 5 групп – 0,3%. Таким образом, основная масса элементов – это мигранты, которые осуществляют кругооборот в географической оболочке, а часть инертных элементов очень мала.

Рассеянные элементы, характеризующиеся преобладанием свободных атомов. Вступают в химические реакции, но их соединения редко встречаются в земной коре. Разделяются на две подгруппы. Первая – рубидий, цезий, ниобий, тантал – создают соединения в глубинах земной коры, а на поверхности их минералы разрушаются. Вторая – йод, бром – вступают в реакции лишь на поверхности.

Радиоактивные элементы – полоний, радон, радий, уран, нептуний, плутоний.

Редкоземельные элементы – иттрий, самарий, европий, тулий т.д.

Круглогодично биохимические циклы приводят в движение около 480 млрд. т. вещества.

В.И. Вернадский сформулировал три биогеохимических принципа, которые объясняют сущность биогенной миграции химических элементов:

Биогенная миграция химических элементов в биосфере всегда стремится к максимальному своему проявлению.

Эволюция видов в ходе геологического времени, приводящая к созданию устойчивых форм жизни, идёт в направлении, усиливающем биогенную миграцию атомов.

Живое вещество находится в непрерывном химическом обмене с окружающей его средой, что является фактором, воссоздающим и поддерживающим биосферу.

Рассмотрим, как движутся в биосфере некоторые из этих элементов.

Круговорот углерода. Главным участником биотического круговорота является углерод как основа органических веществ. Преимущественно круговорот углерода происходит между живым веществом и углекислым газом атмосферы в процессе фотосинтеза. С пищей его получают травоядные, от травоядных – хищники. При дыхании, гниении углекислый газ частично возвращается в атмосферу, возврат происходит при сжигании органических полезных ископаемых.

При отсутствии возврата углерода в атмосферу, он был бы израсходован зелёными растениями за 7-8 лет. Скорость биологического оборота углерода через фотосинтез – 300 лет. Мировой океан играет большую роль в регулировании содержания СО2 в атмосфере. Если в атмосфере повышается содержание СО2, часть его растворяется в воде, вступая в реакцию с карбонатом кальция.

Круговорот кислорода.

Кислород обладает высокой химической активностью, вступает в соединения практически со всеми элементами земной коры. Встречается в основном в виде соединений. Каждый четвёртый атом живого вещества – атом кислорода. Почти весь молекулярный кислород в атмосфере возник и поддерживается на постоянном уровне благодаря деятельности зелёных растений. Кислород атмосферы, связываясь при дыхании и освобождаясь при фотосинтезе, проходит через все живые организмы за 200 лет.

Круговорот азота. Азот является составной частью всех белков. Общее отношение связанного азота, как элемента, составляющего органическое вещество, к азоту в природе равно 1:100000. Энергия химической связи в молекуле азота очень велика. Поэтому соединение азота с другими элементами – кислородом, водородом (процесс азотофиксации) – требует больших затрат энергии. Промышленная фиксация азота идёт в присутствии катализаторов при температуре -500оС и давлении –300 атм.

Как известно, атмосфера содержит более 78% молекулярного азота, но в таком состоянии он не доступен зелёным растениям. Для своего питания растения могут использовать лишь соли азотной и азотистой кислот. Каковы пути образования этих солей? Вот некоторые из них:

В биосфере фиксация азота осуществляется несколькими группами анаэробных бактерий и цианобактерий при нормальной температуре и давлении благодаря высокой эффективности биокатализа. Считается, что бактерии переводят в связанную форму приблизительно 1 млрд. т азота в год (мировой объём промышленной фиксации – около 90 млн.т).

Почвенные азотофиксирующие бактерии способны усваивать молекулярный азот из воздуха. Они обогащают почву азотистыми соединениями, поэтому их значение чрезвычайно велико.

В результате разложения азотосодержащих соединений органических веществ растительного и животного происхождения.

Под действием бактерий азот переходит в нитраты, нитриты, аммонийные соединения. В растениях соединения азота принимают участие в синтезе белковых соединений, которые в цепях питания передаются от организма к организму.

Круговорот фосфора. Ещё одним важным элементом, без которого невозможен синтез белков, является фосфор. Основные источники – изверженные породы (апатиты) и осадочные породы (фосфориты).

Неорганический фосфор вовлекается в круговорот в результате естественных процессов выщелачивания. Фосфор усваивается живыми организмами, которые при его участии синтезируют ряд органических соединений и передают на различные трофические уровни.

Закончив свой путь по трофическим цепям, органические фосфаты разлагаются микробами и превращаются в минеральные фосфаты, доступные для зелёных растений.

В процессе биологического круговорота, который обеспечивает движение вещества и энергии, нет места накоплению отходов. Продукты жизнедеятельности (т.е. отходы) каждой формы жизни являются питательной средой для других организмов.

Теоретически в биосфере всегда должен поддерживаться баланс между продуцированием биомассы и её разложением. Однако в отдельные геологические периоды сбалансированность биологического круговорота нарушалась, когда из-за определённых природных условий, катаклизмов не вся биологическая продукция усваивалась, трансформировалась. В этих случаях образовывались излишки биологической продукции, которые консервировались и откладывались в земной коре, под толщей воды, наносов, оказывались в зоне вечной мерзлоты. Так сформировались залежи каменного угля, нефти, газа, известняка. Надо отметить, что они не засоряют биосферу. В органических полезных ископаемых сконцентрировалась энергия Солнца, накопленная в процессе фотосинтеза. Сейчас, сжигая органические горючие полезные ископаемые, человек высвобождает эту энергию.

Биологический круговорот химических элементов в распространенных тропических сообществах

Биоклиматические условия тропической территории весьма разнообразны. Представление о тропиках как о сплошной полосе джунглей совершенно не отвечает действительности. Меняющиеся соотношения атмосферных осадков и эвапотранспирации, длитель­ности сухих и дождливых сезонов создают широкую гамму экосистем с разной степенью атмосферного увлажнения - от крайне засушливых или пустынных ландшафтов до постоянно влажных тропических лесов. При наличии сезона, на протяжении которого испаряемость превышает количество осадков, существуют разреженные светлые высокотравные леса, которые при продолжительном сухом сезоне сбрасывают листву. Для более засушливых условий типичны редкостойные группы деревьев, чередующиеся с открытыми пространствами, покрытыми травянистой растительностью. С усилением аридности деревья заменяются зарослями колючих кустарников, а пышный покров высоких злаков - низкотравной растительностью с невысокой степенью покрытия почвы.

Соотношения площадей разной степени атмосферного увлажне­ния на континентах неодинаковы. Засушливые области занимают подавляющую часть Австралии, значительную часть Индии, но менее распространены в Южной Америке. В экваториальной полосе Африки, ограниченной 6° с. ш. и 6° ю. ш., площади разной степе­ни атмосферного увлажнения распределяются следующим образом:

Из приведенных данных следует, что влажные леса занимают всего около "/5 экваториальной полосы Африки, а большая ее часть занята комбинацией светлых лесов и высокотравных саванн. На остальной территории распространены более или менее засушливые ландшафты, вплоть до почти пустынных, где выпадает менее 200 мм осадков в год. Согласно данным Б.Г.Розанова (1977), зона распространения всех видов тропических лесов занимает 20 448 тыс. км 2 , или 13,33% Мировой суши, саванновая зона - 14 259 тыс. км 2 (9,56%), области тропических пустынь - 4506 тыс. км 2 , или 3,02%. При этом не учитывались площади развеиваемых песков, безжизненных каме­нистых пустынь, солончаков.

Биологический круговорот элементов в тропических лесах. Пос­тоянно влажные тропические леса - самая мощная растительная формация. Обилие тепла и влаги обусловливает самую большую биомассу среди биоценозов Мировой суши - в среднем 50 000 т/км 2 сухого вещества, а в отдельных случаях до 170 000 т/км 2 . Фактором, лимитирующим рост биомассы, является необходимая для фотосинтеза световая энергия. С целью ее максимального ис­пользования под покровом деревьев высотой 30-40 м расположено еще несколько ярусов деревьев, приспособленных к рассеянному свету. Значительная часть отмирающих и опадающих листьев высо­ких деревьев перехватывается многочисленными эпифитами. По этой причине химические элементы, содержащиеся в листьях, вновь захватываются в биологический круговорот, не достигая почвы. Во влажных тропических лесах вегетация продолжается весь год. Годовая продукция в среднем равна 2500 т/км 2 .

Биогеохимическая специфика влажных тропических лесов заключается в том, что почти все количество химических элементов, необходимое для питания огромной массы растительности, содержится в самих растениях. Биогеохимический цикл массообмена сильно замкнут. Если вырубить дождевой тропический лес, то вместе с гибелью деревьев нарушится вся тысячелетиями создаваемая система биологического круговорота и под сведенным лесом останутся бесплодные земли.

Биогеохимическая ситуация в светлых листопадных тропических лесах и саваннах близка к таковой в лиственных лесах умеренного климата, но периоды подавления биогеохимических процессов обусловлены не понижением температуры, а отсутствием дождей и сезонным дефицитом влаги. Биомасса сухих саванн около 200-600 т/км 2 . Количество опада (меньше 150-200 т/км 2) отвечает условиям тропических пустынь. Биомасса листопадных тропичес­ких лесов разной степени увлажнения и высокотравных парковых саванн занимает промежуточное положение между постоянно влаж­ными лесами и сухими саваннами.

Согласно имеющимся данным Л.Е.Родина и Н.И.Базилевич (1965), распределение и динамика масс в растительности постоянно влажного тропического леса характеризуются следующими показа­телями (т/км 2):

Необходимо отметить, что концентрация химических элементов в древесине стволов и ветвей тропических деревьев, как правило, более низкая, чем в листьях, которые образуют основную массу опада. Концентрация азота в древесине редко достигает 0,5% массы сухого вещества, а в листьях - около 2%. В листьях обычно в несколько раз выше, чем в древесине, концентрация кальция, ка­лия, магния, натрия, кремния, фосфора. Содержание элементов в листьях деревьев и в травянистой растительности, обильно представленной в светлых листопадных лесах, слабо разли­чается. Концентрация большей части рассеянных элементов в лис­тьях деревьев и травах также более высокая, чем в древесине, хотя бария и особенно стронция больше в древесине.

На основании имеющихся данных мы принимаем среднее значе­ние суммы зольных элементов в биомассе постоянно влажного тро­пического леса равным 800 т/км 2 ; массу этих элементов, вовлекае­мую в биологический круговорот, равной 150 т/км 2 в год. Для светлых лесов средние значения составляют соответственно 200 и 50 т/км 2 в год. Исходя из этих цифр определены ориентировочные значения масс рассеянных элементов, ежегодно вовлекаемых в биологический круговорот.

Концентрация зольных элементов в экваториальной растительности Восточной Африки, % сухой массы (по В.В.Добровольскому 1975)

№ образца Элементы "Чистая зола" Примесь
Si А1 Fe Mn Ti Са Mg Na Р S минеральных частиц
52 2,27 0,41 0,40 0,008 0,006 0,24 0,12 0,03 0,06 0,01 7,29 3,21
76 0,05 0,01 0,02 0,001 0,001 0,29 0,02 0,01 0,02 0,04 0,79 0,40
42 1,06 1,87 1,48 0,05 0,07 0,45 0,27 0,22 0,06 0,04 9,07 11,33
210 0,69 0,01 0,08 0,02 0,001 0,08 0,08 0,05 0,08 0,06 6,32 0,68

Образцы: 52 - разреженный травянистый покров низкотравной саван­ны с преобладанием представителей родов Sporobolus, Cynodon, KyUinga, Северо-Западная Танзания.

76 - ствол Podocarpus, дождевой лес южного склона Килиманджаро, Танзания.

42 - лесная подстилка дождевого леса южного склона Килиманджаро, Танзания.

210 - стебли папируса (Cyperuspapyrus), пойма Белого Нила вблизи истока из озера Альберта, Уганда.

Массы рассеянных элементов, вовлекаемые в биологический круговорот в тропических лесах

Уровни концентрации рассеянных элементов в почвообразующем субстрате разных районов тропической суши неодинаковы. Это отражается на содержании элементов в растениях. Например, в Восточной Африке в злаковых травах, собранных на площади распространения кристаллических пород докембрийского фунда­мента, концентрация меди равна 71*10 -4 %, а в аналогичных травах на площади распространения вулканических лав - 120*10 -4 %. Кон­центрация цинка соответственно меняется от 120 до 450 10- 4 %), TiOz - от 200 до 1800 10 -4 %.

В таблице сопоставлено содержание рассеянных элементов в золе трав и ветвей деревьев (акаций) из саванн Восточной Африки. Видно, что тяжелые металлы сильнее аккумулируются в травах, а барий и стронций - в деревьях. Следует отметить, что концентра­ция последнего возрастает с усилением засушливости. В аридных районах южной Танзании мы обнаружили концентрацию стронция в золе ветвей баобаба около 4500 мкг/г, а в одном случае в ветвях акаций в 3 раза больше.

Интенсивность биологического поглощения и концентрация рассеянных элементов в золе трав и деревьев саванн Восточной Африки (по В.В.Добровольскому, 1973)

Элементы Концентрация, мкг/г Коэффициент биологического
" поглощения Кб
травы, ветви акаций, травы ветви акаций
6 проб 9 проб
Ti 1140 230 0,1 0,03
Mn 1880 943 1,9 0,9
V 59 45 0,3 0,2
Сг 28 12 0,2 0,08
39 144 0,6 2,0
Со 20 12 0,6 0,4
Си " 85 39 1,5 0,7
РЬ 34 21 1.5 0,9
Zn 118 79 1,2 0,8
Mo 57 6 7,1 0,8
Nb 59 18 0,9 0,3
Zr 165 92 0,5 0,3
Ga 36 4 1,6 0,2
Sr 450 3340 3,5 25,7
Ba 440 630 3,0 4,3

Надземная часть саванновых трав обладает высокой зольностью - от 6 до 10%, отчасти обусловленной примесью мелких частиц минеральной пыли, обнаруживаемой под микроскопом, а иногда и невооруженным глазом. Количество минеральной пыли составляет 2-3% от массы абсолютно сухого вещества надземной части трав. По-видимому, примесь минеральной пыли сказывается на повышен­ной концентрации галлия, слабо поглощаемого растениями, но содержащегося в высокодисперсном глинистом материале, энергич­но переносимом ветром. Но даже после исключения нерастворимой силикатной пыли сумма зольных элементов в саванновых злаках в 2 раза больше, чем в злаках высокогорных лугов.



Рассказать друзьям