Как решать интегралы с дробями. Интегрирование дробно-рациональной функции

💖 Нравится? Поделись с друзьями ссылкой

Рациональная функция - это дробь вида , числитель и знаменатель которой - многочлены или произведения многочленов.

Пример 1. Шаг 2.

.

Умножаем неопределённые коэффициенты на многочлены, которых нет в данной отдельной дроби, но которые есть в других полученных дробях:

Раскрываем скобки и приравниваем полученое к полученному выражению числитель исходной подынтегральной дроби:

В обеих частях равенства отыскиваем слагаемые с одинаковыми степенями икса и составляем из них систему уравнений:

.

Сокращаем все иксы и получаем эквивалентную систему уравнений:

.

Таким образом, окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 2. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Теперь начинаем искать неопределённые коэффициенты. Для этого числитель исходной дроби в выражении функции приравниваем к числителю выражения, полученного после приведения суммы дробей к общему знаменателю:

Теперь требуется составить и решить систему уравнений. Для этого приравниваем коэффициенты при переменной в соответствующей степени в числителе исходного выражения функции и аналогичные коэффициенты в полученном на предыдущем шаге выражения:

Решаем полученную систему:

Итак, , отсюда

.

Пример 3. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

Начинаем искать неопределённые коэффициенты. Для этого числитель исходной дроби в выражении функции приравниваем к числителю выражения, полученного после приведения суммы дробей к общему знаменателю:

Как и в предыдущих примерах составляем систему уравнений:

Сокращаем иксы и получаем эквивалентную систему уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 4. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Как приравнивать числитель исходной дроби к выражению в числителе, полученному после разложения дроби на сумму простых дробей и приведения этой суммы к общему знаменателю, мы уже знаем из предыдуших примеров. Поэтому лишь для контроля приведём получившуюся систему уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

Пример 5. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Самостоятельно приводим к общему знаменателю эту сумму, приравнивать числитель этого выражения к числителю исходной дроби. В результате должна получиться следующая система уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 6. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

Производим с этой суммой те же действия, что и в предыдущих примерах. В результате должна получиться следующая система уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 7. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

После известных действий с полученной суммой должна получиться следующая система уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 8. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Внесём некоторые изменения в уже доведённые до автоматизма действия для получения системы уравнений. Есть искусственный приём, который в некоторых случаях помогает избежать лишних вычислений. Приводя сумму дробей к общему знаменателю получаем и приравнивая числитель этого выражения к числителю исходной дроби, получаем.

«Математик так же, как художник или поэт, создает узоры. И если его узоры более устойчивы, то лишь потому, что они составлены из идей... Узоры математика так же, как узоры художника или поэта, должны быть прекрасны; идеи так же, как цвета или слова, должны соответствовать друг другу. Красота есть первое требование: в мире нет места для некрасивой математики ».

Г.Х.Харди

В первой главе отмечалось, что существуют первообразные довольно простых функций, которые уже нельзя выразить через элементарные функции. В связи с этим, огромное практическое значение приобретают те классы функций, о которых можно точно сказать, что их первообразные – элементарные функции. К такому классу функций относятся рациональные функции , представляющие собой отношение двух алгебраических многочленов. К интегрированию рациональных дробей приводят многие задачи. Поэтому очень важно уметь интегрировать такие функции.

2.1.1. Дробно-рациональные функции

Рациональной дробью (или дробно-рациональной функцией )называется отношение двух алгебраических многочленов:

где и – многочлены.

Напомним, что многочленом (полиномом , целой рациональной функцией ) n -й степени называется функция вида

где – действительные числа. Например,

– многочлен первой степени;

– многочлен четвертой степени и т.д.

Рациональная дробь (2.1.1) называется правильной , если степень ниже степени , т.е. n <m , в противном случае дробь называется неправильной .

Любую неправильную дробь можно представить в виде суммы многочлена (целой части) и правильной дроби (дробной части). Выделение целой и дробной частей неправильной дроби можно производить по правилу деления многочленов «уголком».

Пример 2.1.1. Выделить целую и дробную части следующих неправильных рациональных дробей:

а) , б) .

Решение . а) Используя алгоритм деления «уголком», получаем

Таким образом, получаем

.

б) Здесь также используем алгоритм деления «уголком»:

В результате, получаем

.

Подведём итоги. Неопределённый интеграл от рациональной дроби в общем случае можно представить суммой интегралов от многочлена и от правильной рациональной дроби. Нахождение первообразных от многочленов не представляет трудностей. Поэтому в дальнейшем будем рассматривать в основном правильные рациональные дроби.

2.1.2. Простейшие рациональные дроби и их интегрирование

Среди правильных рациональных дробей выделяют четыре типа, которые относят кпростейшим (элементарным) рациональным дробям:

3) ,

4) ,

где – целое число, , т.е. квадратный трёхчлен не имеет действительных корней.

Интегрирование простейших дробей 1-го и 2-го типа не представляет больших трудностей:

, (2.1.3)

. (2.1.4)

Рассмотрим теперь интегрирование простейших дробей 3-го типа, а дроби 4-го типа рассматривать не будем.

Начнём с интегралов вида

.

Данный интеграл обычно вычисляют путем выделения полного квадрата в знаменателе. В результате получается табличный интеграл следующего вида

или .

Пример 2.1.2. Найти интегралы:

а) , б) .

Решение . а) Выделим из квадратного трёхчлена полный квадрат:

Отсюда находим

б) Выделив из квадратного трёхчлена полный квадрат, получаем:

Таким образом,

.

Для нахождения интеграла

можно выделить в числителе производную знаменателя и разложить интеграл на сумму двух интегралов: первый из них подстановкой сводится к виду

,

а второй – к рассмотренному выше.

Пример 2.1.3. Найти интегралы:

.

Решение . Заметим, что . Выделим в числителе производную знаменателя:

Первый интеграл вычисляется при помощи подстановки :

Во втором интеграле выделим полный квадрат в знаменателе

Окончательно, получаем

2.1.3. Разложение правильной рациональный дроби
на сумму простейших дробей

Любую правильную рациональную дробь можно представить единственным образом в виде суммы простейших дробей. Для этого знаменатель нужно разложить на множители. Из высшей алгебры известно, что каждый многочлен с действительными коэффициентами

ТЕМА: Интегрирование рациональных дробей.

Внимание! При изучении одного из основных приемов интегрирования: интегрирования рациональных дробей – требуется для проведения строгих доказательств рассматривать многочлены в комплексной области. Поэтому необходимо изучить предварительно некоторые свойства комплексных чисел и операций над ними.

Интегрирование простейших рациональных дробей.

Если P (z ) и Q (z ) – многочлены в комплексной области, то - рациональная дробь. Она называется правильной , если степень P (z ) меньше степени Q (z ) , и неправильной , если степень Р не меньше степени Q .

Любую неправильную дробь можно представить в виде: ,

P(z) = Q(z) S(z) + R(z),

a R (z ) – многочлен, степень которого меньше степени Q (z ).

Таким образом, интегрирование рациональных дробей сводится к интегрированию многочленов, то есть степенных функций, и правильных дробей, так как является правильной дробью.

Определение 5. Простейшими (или элементарными) дробями называются дроби следующих видов:

1) , 2) , 3) , 4) .

Выясним, каким образом они интегрируются.

3) (изучен ранее).

Теорема 5. Всякую правильную дробь можно представить в виде суммы простейших дробей (без доказательства).

Следствие 1. Если - правильная рациональная дробь, и если среди корней многочлена будут только простые действительные корни, то в разложении дроби на сумму простейших дробей будет присутствовать лишь простейшие дроби 1-го типа:

Пример 1.

Следствие 2. Если - правильная рациональная дробь, и если среди корней многочлена будут только кратные действительные корни, то в разложении дроби на сумму простейших дробей будет присутствовать лишь простейшие дроби 1-го и 2-го типов:

Пример 2.

Следствие 3. Если - правильная рациональная дробь, и если среди корней многочлена будут только простые комплексно - сопряженные корни, то в разложении дроби на сумму простейших дробей будет присутствовать лишь простейшие дроби 3-го типа:

Пример 3.

Следствие 4. Если - правильная рациональная дробь, и если среди корней многочлена будут только кратные комплексно - сопряженные корни, то в разложении дроби на сумму простейших дробей будет присутствовать лишь простейшие дроби 3-го и 4-го типов:

Для определения неизвестных коэффициентов в приведенных разложениях поступают следующим образом. Левую и правую часть разложения , содержащего неизвестные коэффициенты, умножают на Получается равенство двух многочленов. Из него получают уравнения на искомые коэффициенты, используя, что:

1. равенство справедливо при любых значениях Х (метод частных значений). В этом случае получается сколько угодно уравнений, любые m из которых позволяют найти неизвестные коэффициенты.

2. совпадают коэффициенты при одинаковых степенях Х (метод неопределенных коэффициентов). В этом случае получается система m – уравнений с m – неизвестными, из которых находят неизвестные коэффициенты.

3. комбинированный метод.

Пример 5. Разложить дробь на простейшие.

Решение:

Найдем коэффициенты А и В.

1 способ - метод частных значений:

2 способ – метод неопределенных коэффициентов:

Ответ:

Интегрирование рациональных дробей.

Теорема 6. Неопределенный интеграл от любой рациональной дроби на всяком промежутке, на котором ее знаменатель не равен нулю, существует и выражается через элементарные функции, а именно рациональные дроби, логарифмы и арктангенсы.

Доказательство.

Представим рациональную дробь в виде: . При этом последнее слагаемое является правильной дробью, и по теореме 5 ее можно представить в виде линейной комбинации простейших дробей. Таким образом, интегрирование рациональной дроби сводится к интегрированию многочлена S (x ) и простейших дробей, первообразные которых, как было показано, имеют вид, указанный в теореме.

Замечание. Основную трудность при этом составляет разложение знаменателя на множители, то есть поиск всех его корней.

Пример 1. Найти интеграл

Как известно, любую рациональную функцию от некоторой переменной x можно разложить на многочлен и простейшие, элементарные, дроби. Имеется четыре типа простейших дробей:
1) ;
2) ;
3) ;
4) .
Здесь a, A, B, b, c - действительные числа. Уравнение x 2 + bx + c = 0 не имеет действительных корней.

Интегрирование дробей первых двух типов

Интегрирование первых двух дробей выполняется с помощью следующих формул из таблицы интегралов :
,
, n ≠ - 1 .

1. Интегрирование дроби первого типа

Дробь первого типа подстановкой t = x - a приводится к табличному интегралу:
.

2. Интегрирование дроби второго типа

Дробь второго типа приводится к табличному интегралу той же подстановкой t = x - a :

.

3. Интегрирование дроби третьего типа

Рассмотрим интеграл от дроби третьего типа:
.
Будем вычислять его в два приема.

3.1. Шаг 1. Выделим в числителе производную знаменателя

Выделим в числителе дроби производную от знаменателя. Обозначим: u = x 2 + bx + c . Дифференцируем: u′ = 2 x + b . Тогда
;
.
Но
.
Мы опустили знак модуля, поскольку .

Тогда:
,
где
.

3.2. Шаг 2. Вычисляем интеграл с A = 0, B=1

Теперь вычисляем оставшийся интеграл:
.

Приводим знаменатель дроби к сумме квадратов:
,
где .
Мы считаем, что уравнение x 2 + bx + c = 0 не имеет корней. Поэтому .

Сделаем подстановку
,
.
.

Итак,
.

Тем самым мы нашли интеграл от дроби третьего типа:

,
где .

4. Интегрирование дроби четвертого типа

И наконец, рассмотрим интеграл от дроби четвертого типа:
.
Вычисляем его в три приема.

4.1) Выделяем в числителе производную знаменателя:
.

4.2) Вычисляем интеграл
.

4.3) Вычисляем интегралы
,
используя формулу приведения:
.

4.1. Шаг 1. Выделение в числителе производной знаменателя

Выделим в числителе производную знаменателя, как мы это делали в . Обозначим u = x 2 + bx + c . Дифференцируем: u′ = 2 x + b . Тогда
.

.
Но
.

Окончательно имеем:
.

4.2. Шаг 2. Вычисление интеграла с n = 1

Вычисляем интеграл
.
Его вычисление изложено в .

4.3. Шаг 3. Вывод формулы приведения

Теперь рассмотрим интеграл
.

Приводим квадратный трехчлен к сумме квадратов:
.
Здесь .
Делаем подстановку.
.
.

Выполняем преобразования и интегрируем по частям.




.

Умножим на 2(n - 1) :
.
Возвращаемся к x и I n .
,
;
;
.

Итак, для I n мы получили формулу приведения:
.
Последовательно применяя эту формулу, мы сведем интеграл I n к I 1 .

Пример

Вычислить интеграл

Решение

1. Выделим в числителе производную знаменателя.
;
;


.
Здесь
.

2. Вычисляем интеграл от самой простой дроби.

.

3. Применяем формулу приведения:

для интеграла .
В нашем случае b = 1 , c = 1 , 4 c - b 2 = 3 . Выписываем эту формулу для n = 2 и n = 3 :
;
.
Отсюда

.

Окончательно имеем:

.
Находим коэффициент при .
.



Рассказать друзьям