Как тяжелые металлы попадают в почву. Тяжелые металлы в почве и растениях

💖 Нравится? Поделись с друзьями ссылкой

Содержание ТМ в почвах зависит, как установлено многими исследователями, от состава исходных горных пород, значительное разнообразие которых связано со сложной геологической историей развития территорий. Химический состав почвообразующих пород, представленный продуктами выветривания горных пород, предопределен химическим составом исходных горных пород и зависит от условий гипергенного преобразования. тяжелый металл водоем почва

Первый этап трансформации оксидов тяжелых металлов в почвах является взаимодействие их с почвенным раствором и его компонентами. Даже в такой простой системе как вода находящаяся в равновесии с СО2, атмосферного воздуха, оксиды ТМ подвергаются изменению и существенно различны по устойчивости.

Процесс трансформации поступивших в почву в процессе техногенеза ТМ включает следующие стадии:

  • 1) преобразование оксидов тяжелых металлов в гидроксиды (карбонаты, гидрокарбонаты);
  • 2) растворение гидроксидов тяжелых металлов и адсорбция соответствующих катионов ТМ твердыми фазами почв;
  • 3) образование фосфатов тяжелых металлов и их соединений с органическими веществами почвы.

Тяжелые металлы, поступающие на поверхность почвы, накапливаются в почвенной толще, особенно в верхнем горизонте и медленно удаляются при выщелачивании, потреблением растениями и эрозии. Первый период полуудаления ТМ значительно варьируется для разных элементов: Zn - 70 - 510 лет, Cd - 13 - 110 лет, Cu - 310 - 1500 лет, Pb - 740 - 5900 лет.

Свинец (Pb). Атомная масса 207,2. Приоритетный элемент-токсикант. Все растворимые соединения свинца ядовиты. В естественных условиях он существует в основном в форме PbS. Кларк Pb в земной коре 16,0 мг/кг. По сравнению с другими ТМ он наименее подвижен, причем степень подвижности элемента сильно снижается при известковании почв. Подвижный Pb присутствует в виде комплексов с органическим веществом. При высоких значениях рН свинец закрепляется в почве химически в виде гидроксида, фосфата, карбоната и Pb-органических комплексов.

Естественное содержание свинца в почвах наследуется от материнских пород и тесно связано с их минералогическим и химическим составом. Средняя концентрация этого элемента в почвах мира достигает по разным оценка от 10 до 35 мг/кг. ПДК свинца для почв в России соответствует 30 мг/кг, в Германии - 100 мг/кг.

Высокая концентрация свинца в почвах может быть связана как с природными геохимическими аномалиями, так и с антропогенным воздействием. При техногенном загрязнении наибольшая концентрация элемента, как правило, обнаруживается в верхнем слое почвы. В некоторых промышленных районах она достигает 1000 мг/кг, а в поверхностном слое почв вокруг предприятий цветной металлургии в Западной Европе - 545 мг/кг.

Содержание свинца в почвах на территории России существенно варьирует в зависимости от типа почвы, близости промышленных предприятий и естественных геохимических аномалий. В почвах селитебных зон, особенно связанных с использованием и производством свинецсодержащих продуктов, содержание данного элемента часто в десятки и более раз превышает ПДК. По предварительным оценкам до 28% территории страны имеет содержание Рb в почве, в среднем, ниже фоновой, а 11% - могут быть отнесены к зоне риска. В то же время, в Российской Федерации проблема загрязнения почв свинцом - преимущественно проблема селитебных территорий.

Кадмий (Cd). Атомная масса 112,4. Кадмий по химическим свойствам близок к цинку, но отличается от него большей подвижностью в кислых средах и лучшей доступностью для растений. В почвенном растворе металл присутствует в виде Cd2+ и образовывает комплексные ионы и органические хелаты. Главный фактор, определяющий содержание элемента в почвах при отсутствии антропогенного влияния, - материнские породы. Кларк кадмия в литосфере 0,13 мг/кг. В почвообразующих породах содержание металла в среднем составляет: в глинах и глинистых сланцах - 0,15 мг/кг, лессах и лессовидных суглинках - 0,08, песках и супесях - 0,03 мг/кг. В четвертичных отложениях Западной Сибири концентрация кадмия изменяется в пределах 0,01-0,08 мг/кг.

Подвижность кадмия в почве зависит от среды и окислительно-восстановительного потенциала.

Среднее содержание кадмия в почвах мира равно 0,5 мг/кг. Концентрация его в почвенном покрове европейской части России составляет 0,14 мг/кг - в дерново-подзолистой почве, 0,24 мг/кг - в черноземе, 0,07 мг/кг - в основных типах почв Западной Сибири. Ориентировочно-допустимое содержание (ОДК) кадмия для песчаных и супесчаных почв в России составляет 0,5 мг/кг, в Германии ПДК кадмия - 3 мг/кг.

Загрязнение почвенного покрова кадмием считается одним из наиболее опасных экологических явлений, так как он накапливается в растениях выше нормы даже при слабом загрязнении почвы. Наибольшие концентрации кадмия в верхнем слое почв отмечаются в горнорудных районах - до 469 мг/кг, вокруг цинкоплавилен они достигают 1700 мг/кг.

Цинк (Zn). Атомная масса 65,4. Его кларк в земной коре 83 мг/кг. Цинк концентрируется в глинистых отложениях и сланцах в количествах от 80 до 120 мг/кг, в делювиальных, лессовидных и карбонатных суглинистых отложениях Урала, в суглинках Западной Сибири - от 60 до 80 мг/кг.

Важными факторами, влияющими на подвижность Zn в почвах, являются содержание глинистых минералов и величина рН. При повышении рН элемент переходит в органические комплексы и связывается почвой. Ионы цинка также теряют подвижность, попадая в межпакетные пространства кристаллической решетки монтмориллонита. С органическим веществом Zn образует устойчивые формы, поэтому в большинстве случаев он накапливается в горизонтах почв с высоким содержанием гумуса и в торфе.

Причинами повышенного содержания цинка в почвах могут быть как естественные геохимические аномалии, так и техногенное загрязнение. Основными антропогенными источниками его поступления в первую очередь являются предприятия цветной металлургии. Загрязнение почв этим металлом привело в некоторых областях к крайне высокой его аккумуляции в верхнем слое почв - до 66400 мг/кг. В огородных почвах накапливается до 250 и более мг/кг цинка. ОДК цинка для песчаных и супесчаных почв равна 55 мг/кг, германскими учеными рекомендуется ПДК, равная 100 мг/кг.

Медь (Cu). Атомная масса 63,5. Кларк в земной коре 47 мг/кг (Виноградов, 1962). В химическом отношении медь - малоактивный металл. Основополагающим фактором, влияющим на величину содержания Cu, является концентрация ее в почвообразующих породах. Из изверженных пород наибольшее количество элемента накапливают основные породы - базальты (100-140 мг/кг) и андезиты (20-30 мг/кг). Покровные и лессовидные суглинки (20-40 мг/кг) менее богаты медью. Наименьшее же ее содержание отмечается в песчаниках, известняках и гранитах (5-15 мг/кг). Концентрация метала в глинах европейской части территории бывшего СССР достигает 25 мг/кг, в лессовидных суглинках - 18 мг/кг. Супесчаные и песчаные почвообразующие породы Горного Алтая накапливают в среднем 31 мг/кг меди, юга Западной Сибири - 19 мг/кг.

В почвах медь является слабомиграционным элементом, хотя содержание подвижной формы бывает достаточно высоким. Количество подвижной меди зависит от многих факторов: химического и минералогического состава материнской породы, рН почвенного раствора, содержания органического вещества и др. Наибольшее количество меди в почве связано с оксидами железа, марганца, гидроксидами железа и алюминия и, особенно, с монтмориллонитом вермикулитом. Гуминовые и фульвокислоты способны образовывать устойчивые комплексы с медью. При рН 7-8 растворимость меди наименьшая.

Среднее содержание меди в почвах мира 30 мг/кг. Вблизи индустриальных источников загрязнения в некоторых случаях может наблюдаться загрязнение почвы медью до 3500 мг/кг. Среднее содержание металла в почвах центральных и южных областей бывшего СССР составляет 4,5-10,0 мг/кг, юга Западной Сибири - 30,6 мг/кг, Сибири и Дальнего Востока - 27,8 мг/кг. ПДК меди в России - 55 мг/кг, ОДК для песчаных и супесчаных почв - 33 мг/кг, в ФРГ - 100 мг/кг.

Никель (Ni). Атомная масса 58,7. В континентальных отложениях он присутствует, главным образом, в виде сульфидов и арсенитов, ассоциируется также с карбонатами, фосфатами и силикатами. Кларк элемента в земной коре равен 58 мг/кг. Наибольшее количество металла накапливают ультраосновные (1400-2000 мг/кг) и основные (200-1000 мг/кг) породы, а осадочные и кислые содержат его в гораздо меньших концентрациях - 5-90 и 5-15 мг/кг, соответственно. Большое значение в накоплении никеля почвообразующими породами играет их гранулометрический состав. На примере почвообразующих пород Западной Сибири видно, что в более легких породах его содержание наименьшее, в тяжелых - наибольшее: в песках - 17, супесях и легких суглинки -22, средние суглинки - 36, тяжелые суглинки и глины -49.

Содержание никеля в почвах в значительной степени зависит от обеспеченности этим элементом почвообразующих пород. Наибольшие концентрации никеля, как правило, наблюдаются в глинистых и суглинистых почвах, в почвах, сформированных на основных и вулканических породах и богатых органическим веществом. Распределение Ni в почвенном профиле определяется содержанием органического вещества, аморфных оксидов и количеством глинистой фракции.

Уровень концентрации никеля в верхнем слое почв зависит также от степени их техногенного загрязнения. В районах с развитой металлообрабатывающей промышленностью в почвах встречается очень высокое накопление никеля: в Канаде его валовое содержание достигает 206-26000 мг/кг, а в Великобритании содержание подвижных форм доходит до 506-600 мг/кг. В почвах Великобритании, Голландии, ФРГ, обработанных осадками сточных вод никель накапливается до 84-101 мг/кг. В России (по данным обследования 40-60 % почв сельскохозяйственных угодий) этим элементом загрязнены 2,8 % почвенного покрова. Доля загрязненных Ni почв в ряду других ТМ (Pb, Cd, Zn, Cr, Co, As и др.), является фактически самой значительной и уступает только землям загрязненным медью (3,8%). По данным мониторинга земель Государственной станции агрохимической службы «Бурятская» за 1993-1997 гг. на территории Республики Бурятия зарегистрировано превышение ПДК никеля на 1,4 % земель от обследованной территории сельхозугодий, среди которых выделяются почвы Закаменского (загрязнены 20% земель - 46 тыс.га) и Хоринского районов (загрязнены 11% земель - 8 тыс.га).

Хром (Cr). Атомная масса 52. В природных соединениях хром обладает валентностью +3 и +6. Большая часть Cr3+ присутствует в хромите FeCr2O4 или других минералах шпинелевого ряда, где он замещает Fe и Al, к которым очень близок по своим геохимическим свойствам и ионному радиусу.

Кларк хрома в земной коре - 83 мг/кг. Наибольшие его концентрации среди магматических горных пород характерны для ультраосновных и основных (1600-3400 и 170-200 мг/кг соответственно), меньшие - для средних пород (15-50 мг/кг) и наименьшие - для кислых (4-25 мг/кг). Среди осадочных пород максимальное содержание элемента обнаружено в глинистых осадках и сланцах (60-120 мг/кг), минимальное - в песчаниках и известняках (5-40 мг/кг). Содержание металла в почвообразующих породах разных регионов весьма разнообразно. В европейской части бывшего СССР его содержание в таких наиболее распространенных почвообразующих породах, как лессы, лессовидные карбонатные и покровные суглинки, составляет в среднем 75-95 мг/кг. Почвообразующие породы Западной Сибири содержат в среднем 58 мг/кг Cr, причем его количество тесно связано с гранулометрическим составом пород: песчаные и супесчаные породы - 16 мг/кг, а среднесуглинистые и глинистые - около 60 мг/кг.

В почвах большая часть хрома присутствует в виде Cr3+. В кислой среде ион Cr3+ инертен, при рН 5,5 почти полностью выпадает в осадок. Ион Cr6+ крайне не стабилен и легко мобилизуется как в кислых, так и щелочных почвах. Адсорбция хрома глинами зависит от рН среды: при увеличении рН адсорбция Cr6+ уменьшается, а Cr3+ увеличивается. Органическое вещество почвы стимулирует восстановление Cr6+ до Cr3+.

Природное содержание хрома в почвах зависит главным образом от его концентрации в почвообразующих породах, а распределение по почвенному профилю - от особенностей почвообразования, в частности от гранулометрического состава генетических горизонтов. Среднее содержание хрома в почвах - 70 мг/кг. Наибольшее содержание элемента отмечается в почвах, сформированных на богатых этим металлом основных и вулканических породах. Среднее содержание Cr в почвах США составляет 54 мг/кг, Китая - 150 мг/кг, Украины - 400 мг/кг. В России его высокие концентрации в почвах в естественных условиях обусловлены обогащенностью почвообразующих пород. Курские черноземы содержат 83 мг/кг хрома, дерново-подзолистые почвы Московской области - 100 мг/кг. В почвах Урала, сформированных на серпентинитах, металла содержится до 10000 мг/кг, Западной Сибири - 86 - 115 мг/кг.

Вклад антропогенных источников в поступление хрома весьма значителен. Металлический хром в основном используется для хромирования в качестве компонента легированных сталей. Загрязнение почв Cr отмечено за счет выбросов цементных заводов, отвалов железохромовых шлаков, нефтеперегонных заводов, предприятий черной и цветной металлургии, использования в сельском хозяйстве осадков промышленных сточных вод, особенно кожевенных предприятий, и минеральных удобрений. Наивысшие концентрации хрома в техногенно загрязненных почвах достигают 400 и более мг/кг, что особенно характерно крупным городам. В Бурятии по данным мониторинга земель, проведенным Государственной станцией агрохимической службы «Бурятская» за 1993-1997 гг., хромом загрязнены 22 тыс. га. Превышения ПДК в 1,6-1,8 раз отмечены в Джидинском (6,2 тыс. га), Закаменском (17,0 тыс. га) и Тункинском (14,0 тыс. га) районах. ПДК хрома в почвах в России еще не разработаны, а в Германии для почв сельскохозяйственных угодий она составляет 200-500, приусадебных участков - 100 мг/кг.

Тяжелые металлы - биохимически активные элементы, входящие в круговорот органических веществ и воздействующие преимущественно на живые организмы. К тяжелым металлам относятся такие элементы, как свинец, медь, цинк, кадмий, никель, кобальт и ряд других.

Миграция тяжёлых металлов в почвах зависит, прежде всего, от щёлочно-кислотных и окислительно-восстановительных условий, определяющих разнообразие почвенно-геохимических обстановок. Важную роль в миграции тяжелых металлов в профиле почв играют геохимические барьеры, в одних случаях усиливающие, в других ослабляющие (в силу способности к консервации) устойчивость почв к загрязнению тяжелыми металлами. На каждом из геохимических барьеров задерживается определённая группа химических элементов, обладающая сходными геохимическими свойствами.

Специфика основных почвообразовательных процессов и тип водного режима обусловливают характер распределения тяжелых металлов в почвах: накопление, консервацию или вынос. Выделены группы почв с накоплением тяжелых металлов в разных частях почвенного профиля: на поверхности, в верхней, в средней части, с двумя максимумами. Кроме того, выделены почвы в зоне , которым присуща концентрация тяжелых металлов за счёт внутрипрофильной криогенной консервации. Особую группу образуют почвы, где в условиях промывного и периодически промывного режимов происходит вынос тяжелых металлов из профиля. Внутрипрофильное распределение тяжелых металлов имеет большое значение для оценки загрязнения почв и прогноза интенсивности аккумуляции в них загрязнителей. Характеристика внутрипрофильного распределения тяжелых металлов дополнена группировкой почв по интенсивности их вовлечения в биологический круговорот. Всего выделено три градации: высокая, умеренная и слабая.

Своеобразна геохимическая обстановка миграции тяжелых металлов в почвах речных пойм, где при повышенной обводнённости значительно возрастает подвижность химических элементов и соединений. Специфика геохимических процессов здесь обусловлена, прежде всего, резко выраженной сезонностью смены окислительно-восстановительных условий. Это связано с особенностями гидрологического режима рек: продолжительностью весенних, наличием или отсутствием осенних паводков, характером меженного периода. Длительность затопления паводковыми водами пойменных террас определяет преобладание либо окислительных (кратковременное затопление поймы), либо окислительно-восстановительных (долгопоёмный режим) условий.

Наибольшим техногенным воздействиям площадного характера подвергаются пахотные почвы. Основной источник загрязнения, с которым в пахотные почвы поступает до 50 % общего количества тяжелых металлов, - фосфорные удобрения. Для определения степени потенциального загрязнения пахотных почв проведен сопряженный анализ свойств почв и свойств загрязнителя: учитывались содержание, состав гумуса и гранулометрический состав почв, а также щелочно-кислотные условия. Данные по концентрации тяжелых металлов в фосфоритах месторождений разного генезиса позволили рассчитать их среднее содержание с учетом приблизительных доз внесения удобрений в пахотные почвы разных районов. Оценка свойств почв соотнесена с величинами агрогенной нагрузки. Совокупная интегральная оценка легла в основу выделения степени потенциального загрязнения почв тяжелыми металлами.

Наиболее опасны по степени загрязнения тяжелыми металлами почвы многогумусовые, глинисто-суглинистые с щелочной реакцией среды: темно-серые лесные, и темно-каштановые - почвы, обладающие высокой аккумулятивной способностью. Повышенной опасностью загрязнения почв тяжелыми металлами характеризуются также Московская и Брянская области. обстановка с дерново-подзолистыми почвами не способствует здесь аккумуляции тяжелых металлов, однако в этих областях техногенная нагрузка велика и почвы не успевают «самоочищаться».

Эколого-токсикологическая оценка почв на содержание тяжелых металлов показала, что 1,7 % земель сельскохозяйственного назначения загрязнено веществами I класса опасности (высокоопасными) и 3,8 % - II класса опасности (умеренно опасными). Загрязнение почв с содержанием тяжелых металльов и мышьяка выше установленных норм выявлено в Республике Бурятия, Республике Дагестан, Республике , Республике Мордовия, Республике Тыва, в Красноярском и Приморском краях, в Ивановской, Иркутской, Кемеровской, Костромской, Мурманской, Новгородской, Оренбургской, Сахалинской, Читинской областях.

Локальное загрязнение почв тяжелыми металлами связано, прежде всего, с крупными городами и . Оценка опасности загрязнения почв комплексом тяжелых металлов проводилась по суммарному показателю Zc.

Глава 1. ТЯЖЕЛЫЕ МЕТАЛЛЫ: БИОЛОГИЧЕСКАЯ РОЛЬ,

Тяжелые металлы – это группа химических элементов с относительной атомной массой более 40. Появление в литературе термина «тяжелые металлы» было связано с проявлением токсичности некоторых металлов и опасности их для живых организмов. Однако в группу «тяжелых» вошли и некоторые микроэлементы, жизненная необходимость и широкий спектр биологического действия которых неопровержимо доказаны (Алексеев, 1987; Минеев, 1988; Краснокутская и др., 1990; Сает и др., 1990; Ильин, 1991; Кадмий: экологические…, 1994; Тяжелые…, 1997; Пронина, 2000).

Различия в терминологии в основном связаны с концентрацией металлов в природной среде. С одной стороны, концентрация металла может быть избыточной и даже токсичной, тогда этот металл называют «тяжелым», с другой стороны, при нормальной концентрации или дефиците его относят к микроэлементам. Таким образом, термины микроэлементы и тяжелые металлы - категории скорее всего каче­ственные, а не количественные, и привязаны к крайним вариан­там экологической обстановки (Алексеев, 1987; Ильин, 1991; Майстренко и др., 1996; Ильин, Сысо, 2001).

Функции живого организма нераздельно связаны с химизмом земной коры и должны изучаться в тесной связи с последним (Виноградов, 1957; Вернадский, 1960; Авцын и др., 1991; Добровольский, 1997). По мнению А.П. Виноградова (1957), количественное содержание того или иного элемента в организме определяется его содержанием во внешней среде, а также свойствами самого элемента, с учетом растворимости его соединений. Впервые научные основы учения о микроэлементах в нашей стране обосновал В. И. Вернадский (1960). Фундаментальные исследования были проведены А.П. Виноградовым (1957) – основоположником учения о биогеохимических провинциях и их роли в возникновении эндемических заболеваний человека и животных и В.В. Ковальским (1974) – основоположником геохимической экологии и биогеографии химических элементов, впервые осуществившим биогеохимическое районирование СССР.

В настоящее время из 92 встречающихся в природе элементов 81 обнаружен в организме человека. При этом 15 из них (Fe , I , Cu , Zn , Co , Cr , Mo , Ni , V , Se , Mn , As , F , Si , Li ) признаны жизненно необходимыми. Однако они могут оказывать отрицательное влияние на растения, животных и человека, если концентрация их доступных форм превышает определенные пределы. Cd , Pb , Sn и Rb считаются условно необходимыми, т.к. они, по всей видимости, не очень важны для растений и животных и опасны для здоровья человека даже при относительно низких концентрациях (Добровольский, 1980; Рэуце, Кырстя, 1986; Ягодин и др., 1989; Авцын и др., 1991; Давыдова, 1991; Вронский, 1996; Панин, 2000; Пронина, 2000).

В течение длительного времени в биогеохимических исследованиях микроэлементов превалировал интерес к геохимическим аномалиям и возникающим из-за них эндемиям природного происхождения. Однако в последующие годы, в связи с бурным развитием промышленности и глобальным техногенным загрязнением окружающей среды, наибольшее внимание стали привлекать аномалии элементов, в большей степени ТМ, имеющих индустриальное происхождение. Уже сейчас во многих регионах мира окружающая среда становится все более химически «агрессивной». Впоследние десятилетия основными объектами биогеохимических исследований стали территории промышленных городов и прилегающих к ним земель (Геохимия…, 1986; Лепнева, 1987; Ильин и др., 1988, 1997; Kabala , Singh , 2001; Kathryn and etc ., 2002), особенно если на них выращиваются, а затем используются в пищу сельскохозяйственные растения (Рэуце, Кырстя, 1986; Ильин, 1985, 1987; Кабата-Пендиас, Пендиас, 1989; Черных, 1996 и др.).

Влияние микроэлементов на жизнедеятельность животных и человека активно изучается и в медицинских целях. В настоящее время выявлено, что многие заболевания, синдромы и патологические состояния вызваны дефицитом, избытком или дисбалансом микроэлементов в живом организме и имеют общее название «микроэлементозы» (Авцын и др., 1991).

В проведенных нами исследованиях металлы изучались с позиций их токсического воздействия на живые организмы, вызванного антропогенным загрязнением окружающей среды, поэтому для изученных элементов мы использовали термин «тяжелые металлы».

1.1. Биологическая роль и токсикологическое влияние тяжелых металлов

В последние годы все сильнее подтверждается важная биологическая роль большинства металлов. Многочисленными исследованиями установлено, что влияние металлов весьма разнообразно и зависит от содержания в окружающей среде и степени нуждаемости в них микроорганизмов, растений, животных и человека.

Фитотоксичное действие ТМ проявляется, как правило, при высоком уровне техногенного загрязнения ими почв и во многом зависит от свойств и особенностей поведения конкретного металла. Однако в природе ионы металлов редко встречаются изолированно друг от друга. Поэтому разнообразные комбинативные сочетания и концентрации разных металлов в среде приводят к изменениям свойств отдельных элементов в результате их синергического или антагонистического воздействия на живые организмы. Например, смесь цинка и меди в пять раз токсичнее, чем арифметически полученная сумма их токсичности, что обусловлено синергизмом при совместном влиянии этих элементов. Подобным образом действует и смесь цинка с никелем. Однако существуют наборы металлов, совместное действие которых проявляется аддитивно. Ярким примером этого являются цинк и кадмий, проявляющие взаимный физиологический антагонизм (Химия…,1985). Очевидны проявления синергизма и антагонизма металлов и в их многокомпонентых смесях. Поэтому суммарный токсикологический эффект от загрязнения среды ТМ зависит не только от набора и уровня содержания конкретных элементов, но и особенностей их взаимного воздействия на биоту.

Таким образом, влияние ТМ на живые организмы весьма разнообразно Это обусловлено, во-первых, химическими особенностями металлов, во-вторых, отношением к ним организмов и, в-третьих, условиями окружающей среды. Ниже, согласно имеющимся в литературе данным (Химия…,1985; Кеннет, Фальчук, 1993; Кадмий: экологические …, 1994; Strawn , Sparks , 2000 и др.), приводим краткую характеристику влияния ТМ на живые организмы.

Свинец . Биологическая роль свинца изучена весьма слабо, однако в литературе встречаются данные (Авцын и др., 1991), подтверждающие, что металл жизненно необходим для животных организмов на примере крыс. Животные испытывают недостаток этого элемента при концентрации его в корме менее 0,05-0,5 мг/кг (Ильин, 1985; Кальницкий, 1985). В небольших количествах он необходим и растениям. Дефицит свинца в растениях возможен при его содержании в надземной части от 2 до 6 мкг/кг сухого вещества (Кальницкий, 1985; Кабата-Пендиас, Пендиас, 1989).

Повышенный интерес к свинцу вызван его приоритетным положением в ряду основных загрязнителей окружающей природной среды (Ковальский, 1974; Сает, 1987; Доклад…, 1997; Снакин, 1998; Макаров, 2002). Металл токсичен для микроорганизмов, растений, животных и людей.

Избыток свинца в растениях, связанный с высокой его концентрацией в почве, ингибирует дыхание и подавляет процесс фотосинтеза, иногда приводит к увеличению содержания кадмия и снижению поступления цинка, кальция, фосфора, серы. Вследствие этого снижается урожайность растений и резко ухудшается качество производимой продукции. Внешние симптомы негативного действия свинца – появление темно-зеленых листьев, скручивание старых листьев, чахлая листва. Устойчивость растений к его избытку неодинаковая: менее ус­тойчивы злаки, более устойчивы бобовые. Поэтому симптомы токсичности у различных культур могут возникнуть при разном валовом содержании свинца в почве - от 100 до 500 мг/кг (Кабата-Пендиас, Пендиас, 1989; Ильин, Сысо, 2001). Концентрация металла выше 10 мг/кг сух. в-ва явля­ется токсичной для большинства культурных растений (Рэуце, Кырстя, 1986).

В организм человека свинец в основном поступает через пищеварительный тракт. При токсичных дозах элемент накапливается в почках, печени, селезенке и костных тканях.При свинцовом токсикозе поражаются в первую очередь органы кроветворения (анемия), нервная система (энцефалопатия и нейропатия) и почки (нефропатия). Наиболее восприимчива к свинцу гематопоэтическая система, особенно у детей.

Кадмий хорошо известен, как токсичный элемент, но он же относится к группе "новых" микроэлементов (кадмий, ванадий, кремний, олово, фтор) и в низких концентрациях способен стимулировать их рост некоторых животных(Авцын и др., 1991). Для выс­ших растений значение кадмия достоверно не установлено.

Основные проблемы, связанные у человечества с этим элемен­том, обусловлены техногенным загрязнением окружающей среды и его токсичностью для живых организмов уже при низких концен­трациях (Ильин, Сысо, 2001).

Токсичность кадмия для растений проявляется в нарушении активности ферментов,тормо­жении фотосинтеза, нарушении транспирации, а также ингибировании восстановления N О 2 до N О. Кроме того, в метаболизме растений он является антагонистом ряда элементов питания (Zn , Cu , Mn , Ni , Se , Ca , Mg , P ). При токсичном воздействии металла у растений наблюдаются задержка роста, повреждение корневой системы и хлороз листьев. Кадмий достаточно легко поступает из почвы и атмосферы в растения. По фитотоксичностииспособности накапливаться в растениях в ряду ТМ он занимает первое место (Cd > Cu > Zn > Pb ) (Овчаренко и др., 1998).

Кадмийспособен накапливаться в организме человека и животных, т.к. сравнительно легко усваивается из пищи и воды и проникает в раз­личные органы и ткани. Токсичное действие металла проявляется уже при очень низких концентрациях. Его избыток ингибирует синтез ДНК, белков и нуклеиновых кислот, влияет на активность ферментов, нарушает усвоение и обмен других микроэлементов (Zn , Cu , Se , Fe ), что может вызывать их дефицит.

Обмен кадмия в организме характеризуется следующими основными особенностями (Авцын и др., 1991): отсутствием эффективного механизма гомеостатического контроля; длительным удержанием (кумуляцией) в организме с очень долгим периодом полувыведения (в среднем 25 лет); преимущественным накоплением в печени и почках;интенсивным взаимодействием с другими двухвалентными металлами как в процессе всасывания, так и на тканевом уровне.

Хроническое воздействие кадмия на человека приводит к нарушениям почечной функции, легочной недостаточности, остеомаляции, анемии и потере обоняния. Существуют данные о возможном канцерогенномэффекте кадмия и о вероятном участии его в развитии сердечно-сосудистых заболеваний. Наиболее тяжелой формой хронического отравления кадмием является болезнь итай-итай, характеризующаяся деформацией скелета с заметным уменьшением роста, поясничными болями, болезненными явлениями в мышцах ног, утиной походкой. Кроме того, отмечаются частые переломы размягченных костей даже при кашле, а также нарушение функции поджелудочной железы, изменения в желудочно-кишечном тракте, гипохромная анемия, дисфункция почек и др. (Авцын и др., 1991).

Цинк. Особый интерес к цинку связан с открытием его роли в нуклеиновом обмене, процессах транскрипции, стабилизации нуклеиновых кислот, белков и особенно компонентов биологических мембран (Пейве, 1961), а также в обмене витамина А. Ему принадлежит важная роль в синтезе нуклеиновых кислот и белка. Цинк присутствует во всех 20-ти нуклеотидилтрансферазах, а его открытие в обратных транскриптазах позволило установить тесную взаимосвязь с процессами канцерогенеза. Элемент необходим для стабилизации структуры ДНК, РНК, рибосом, играет важную роль в процессе трансляции и незаменим на многих ключевых этапах экспрессии гена. Цинк обнаружен в составе более 200 ферментов, относящихся ко всем шести классам, включая гидролазы, трансферазы, оксидоредуктазы, лиазы, лигазы и изомеразы (Авцын и др., 1991). Уникальность цинка заключается в том, что ни один элемент не входит в состав такого количества ферментов и не выполняет таких разнообразных физиологических функций(Кашин, 1999).

Повышенные концентрации цинка оказывают токсическое влияние на живые организмы. У человека они вызывают тошноту, рвоту, дыхательную недостаточность, фиброз легких, является канцерогеном (Кеннет, Фальчук, 1993). Избыток цинка в растениях возникает в зонах промышленного загрязнения почв, а также при неправильном применении цинксодержащих удобрений. Большинство видов растений обладают высокой толерантностью к его избытку в почвах. Однако при очень высоком содержании этого металла в почвах обычным симптомом цинкового токсикоза является хлороз молодых листьев. При избыточном его посту­плении в растения и возникающим при этом антагонизме с другими элементами снижается усвоение меди и железа и проявляются симптомы их недостаточности.

В организмах животных и человека цинк оказывает влияние на деление и дыхание клеток, развитие скелета, формирование мозга и поведенческих рефлексов, заживление ран, воспроизводительную функцию, иммунный ответ, взаимодействует с инсулином. При дефиците элемента возникает ряд кожных заболеваний. Токсичность цинка для животных и человека невелика, т.к. при избыточном поступлении он не кумулируется, а выводится. Однако в литературе имеются отдельные сообщения о токсическом влиянии этого металла: у животных снижается прирост живой массы, появляется депрессия в по­ведении, возможны аборты (Кальницкий, 1985). В целом же наибольшую проблему для растений, животных и человека в большинстве случаев представляет дефицит цинка, нежели его токсичные количества.

Медь – является одним из важнейших незаменимых элементов, необходимых для живых организмов. В растениях она активно участвует в процессах фотосинтеза, дыхания, восстановления и фиксации азота. Медь входит в состав целого ряда ферментов-оксидаз – цитохромоксидазы, церулоплазмина, супероксидадисмутазы, уратоксидазы и других (Школьник, 1974; Авцын и др., 1991) и участвует в биохимических процессах как составная часть ферментов, осуществляющих реакции окисления субстратов молекулярным кислородом. Данные по токсичности элемента для растений немногочисленны. В настоящее время основной проблемой считается недостаток меди в почвах или ее дисбаланс с кобальтом. Основные признаки дефицита меди для растений – замедление, а затем и пре­кращение формирования репродуктивных органов, появление щуп­лого зерна, пустозернистых колосьев, снижение устойчивости к неблагоприятным факторам внешней среды. Наиболее чувствительны к ее недостатку пшеница, овес, ячмень, люцерна, столовая свекла, лук и подсолнечник (Ильин, Сысо 2001; Adriano ,1986).

В организме взрослого человека половина от общего количества меди содержится в мышцах и костях и 10% - в печени. Основные процессы всасывания этого элемента происходят в желудке и тонкой кишке. Ее усвоение и обментесно связаны с содержанием в пище других макро- и микроэлементов и органических соединений. Существует физиологический антагонизм меди с молибденом и сульфатной серой, а также марганцем, цинком, свинцом, стронцием, кадмием, кальцием, серебром. Избыток данных элементов, наряду с низким содержанием меди в кормах и продуктах питания, может обусловить значительный дефицит последней в организмах человека и животных, что в свою очередь приводит к анемии, снижению интенсивности роста, потере живой массы, а при острой нехватке металла (менее 2-3 мг в сутки) возможно возник­новение ревматического артрита и эндемического зоба. Чрезмерное поглощение меди человеком приводит к болезни Вильсона, при которой избыток элемента откладывается в мозговой ткани, коже, печени, поджелудочной железе и миокарде.

Никель. Биологическая роль никеля заключается в участии в структурной организации и функционировании основных клеточных компонентов – ДНК, РНК и белка. Наряду с этим он присутствует и в гормональной регуляции организма. По своим биохимическим свойствам никель весьма схож с железом и кобальтом. Недостаточность металла у жвачных сельскохозяйственных животных проявляется в снижении активности ферментов и возможности ле­тального исхода.

До настоящего времени в литературе не встречаются данные о дефиците никеля для растений, однако в ряде экспериментов установлено положительное влияние внесения никеля в почвы на урожайность сельскохозяйственных культур, которое, возможно, связано с тем, что он стимулиру­ет микробиологические процессы нитрификации и минерализации соединений азота в почвах (Кашин, 1998; Ильин, Сысо, 2001; Brown , Wilch , 1987).Токсичность никеля для растений проявляется в подавлении процессов фотосинтеза и транспирации, появлении признаков хлороза листьев. Для животных организмов токсический эффект элемента сопровождается снижением активности ряда металлоферментов, нарушением синтеза белка, РНК и ДНК, развитием выраженных повреждений во многих органах и тканях. Экспериментально установлена эмбриотоксичность никеля (Строчкова и др., 1987; Ягодин и др., 1991). Избыточное поступление металла в организм животных и человека может быть связано с интенсивным техногенным загрязнением почв и растений этим элементом.

Хром . Хром относится к числу элементов, жизненно необходи­мых животным организмам. Основные его функции - взаимодействие с инсулином в процессах углеводного обмена, участие в структуре и функции нуклеиновых кислот и, вероятно, щитовидной железы (Авцын и др., 1991). Растительные организмы положительно реагируют на внесение хрома при низком содержании в почве доступной формы, однако вопрос о незаменимости элемента для растительных организмов продолжает изучаться.

Токсичное действие металла зависит от валентности: шестивалентный катион гораздо токсичнее трехвалентного. Симптомы токсичности хрома внешне проявляются в снижении темпов роста и развития растений, увядании надземной части, повреждении кор­невой системы и хлорозе молодых листьев. Избыток металла в растениях приводит к резкому снижению концентраций многих физиологически важных элементов, в первую очередь К, Р, Fe , Mn , Cu , B .В организме человека и животных общетоксикологическое, нефротоксическое и гепатотоксическое действие оказывает Cr 6+ . Токсичность хрома выражается в изменении иммунологической ре­акции организма, снижении репаративных процессов в клетках, ингибировании ферментов, поражении печени, нарушении процессов биологического окисления, в частности цикла трикарбоновых кислот. Кроме того, избыток металла вызывает специфические поражения кожи (дерматиты, язвы), изъявления слизистой оболочки носа, пневмосклероз, гастриты, язву желудка и двенадцатиперстной кишки, хромовый гепатоз, нарушения регуляции сосудистого тонуса и сердечной деятельности. Соединения Cr 6+ , наряду с общетоксикологическим действием, способны вызывать мутагенный и канцерогенныйэффекты. Хром, помимо легочной ткани, накапливается в печени, почках, селезенке, костях и костном мозге (Краснокутская и др., 1990).

Влияние токсичных концентраций ТМ на растения приведено в таблице 1.1, а на здоровье человека и животных – в таблице 1.2.

Таблица 1.1

Влияние токсичных концентраций некоторых тяжелыхметаллов на растения

Элемент

Концентрация в почве, мг/кг

Реакция растений на повышенные концентрации ТМ

100-500

Ингибирование дыхания и подавление процесса фотосинтеза, иногда увеличение содержания кадмия и снижение поступления цинка, кальция, фосфора, серы, снижение урожайности, ухудшение качества растениеводческой продукции. Внешние симптомы – появление темно-зеленых листьев, скручивание старых листьев, чахлая листва

1-13

Нарушение активности ферментов, процессов транспирации и фиксации СО 2 , торможение фотосинтеза, ингибирование биологического восстановления N О 2 до N О, затруднение поступления и метабо­лизма в растениях ряда элементов питания. Внешние симптомы - задержка роста, повреждение корневой системы, хлороз листьев.

140-250

Хлороз молодых листьев

200-500

Ухудшение роста и развития растений, увядание надземной части, повреждение кор­невой системы, хлороз молодых листьев, резкое снижение содержания в растениях большинства незаменимых макро- и микроэлементов (К, Р, Fe , Mn , Cu , B и др.).

30-100*

Подавление процессов фотосинтеза и транспирации, появление признаков хлороза

Примечание: * - подвижная форма, по данным: Рэуце, Кырстя, 1986; Кабата-Пендиас, Пендиас,1989; Ягодин и др., 1989;. Ильин, Сысо, 2002


Таблица 1.2

Влияние загрязнения окружающей среды тяжелыми металлами

на здоровье человека и животных

Элемент

Характерные заболевания при высоких концентрациях ТМ в организме

Повышение смертности от сердечно-сосудистых заболеваний, рост общей заболеваемости, изменения в легких детей, поражения органов кроветворения, нервной и сердечно-сосудистой системы, печени, почек, нарушения течения беременности, родов, менструального цикла, мертворождаемости, врожденных уродств. Угнетение активности мно­гих ферментов, нарушение процессов метаболизма.

Нарушения функций почек, ингибирование синтеза ДНК, белков и нуклеиновых кислот, снижение активности ферментов, замедление поступления и обмена других микроэлементов (Zn , Cu , Se , Fe ), что может вызывать их дефицит в организме.

Изменение морфологического состава крови, злокачественные образования, лучевые болезни; у животных – снижение прирост живой массы, депрессия в поведении, возможность абортов.

Увеличение смертности от рака органов дыхания.

Изменение иммунологической ре­акции организма, снижение репаративных процессов в клетках, ингибирование ферментов, поражение печени.

Нарушение синтеза белка, РНК и ДНК, развитие выраженных повреждений во многих органах и тканях.

По данным: Методические …, 1982; Кальницкий, 1985; Авцын и др., 1991; Покатилов, 1993; Макаров, 2002

1.2. Тяжелые металлы в почвах

Содержание ТМ в почвах зависит, как установлено многими исследователями, от состава исходных горных пород, значительноеразнообразие которых связано со сложной геологической историей развития территорий (Ковда, 1973).Химический состав почвообразующих пород, представленный продуктами выветривания горных пород, предопределен химическим составом исходных горных пород и зависит от условий гипергенного преобразования.

В последние десятилетия в процессы миграции ТМ в природной среде интенсивно включилась антропогенная деятельность человечества. Количества химических элементов, поступающие в окружающую среду в результате техногенеза, в ряде случаев значительно превосходят уровень их естественного поступления. Например, глобальное выделение Pb из природных источников в год составляет 12 тыс.т. и антропогенная эмиссия 332 тыс.т. (Nriagu , 1989). Включаясь в природные циклы миграции, антропогенные потоки приводят к быстрому распространению загрязняющих веществ в природных компонентах городского ландшафта, где неизбежно их взаимодействие с человеком. Объемы поллютантов, содержащих ТМ, ежегодно возрастают и наносят ущерб природной среде, подрывают существующее экологическое равновесие и негативно сказываются на здоровье людей.

Основными источниками антропогенного поступления ТМ в окружающую среду являются тепловые электростанции, металлургические предприятия, карьеры и шахты по добыче полиметаллических руд, транспорт, химические средства защиты сельскохозяйственных культур от болезней и вредителей, сжигание нефти и раз­личных отходов, производство стекла, удобрений, цемента и пр. Наиболее мощные ореолы ТМ возникают вокруг предприятий черной и особенно цветной металлургии в результате атмосферных выбросов (Ковальский, 1974; Добровольский, 1983; Израэль, 1984; Геохимия…, 1986; Сает, 1987; Панин, 2000; Kabala , Singh , 2001). Действие загрязняющих веществраспространяется на десятки километров от источника поступления элементов в атмосферу. Так, металлы в количестве от 10 до 30 % от общего выброса в атмосферу распространяются на расстояние 10 км и более от промышленного предприятия. При этом наблюдается комбинированное загрязнение растений, слагающееся из непосредственного оседания аэрозолей и пыли на поверхность листьев и корневого усвоения ТМ, накопившихся в почве в течение продолжительного времени поступления загрязнений из атмосферы (Ильин, Сысо, 2001).

По приведенным ниже данным можно судить о размерах антропогенной деятельности человечества: вклад техногенного свинца со­ставляет 94-97% (остальное - природные источ­ники), кадмия - 84-89%, меди - 56-87%, никеля - 66-75%, ртути - 58% и т.д. При этом 26-44% мирового антропогенного потока этих элемен­тов приходится на Европу, а на долю европейской тер­ритории бывшего СССР - 28-42% от всех выбросов в Европе (Вронский, 1996). Уровень техногенного выпадения ТМ из атмосферы в разных регионах мира неодинаков (табл. 1.3) и зависит от наличия разрабатываемых месторождений, степени развитости горно-обогатительной и промышленной индустрии, транспорта, урбанизированности территорий и др.

Таблица 1.3

Выпадение тяжелых металлов из атмосферы на подстилающую поверхность

регио­нов мира, тыс. т/год (Израэль и др., 1989, цит. по Вронский, 1996)

Регион

Свинец

Кадмий

Ртуть

Европа

1,59

1,78

10,6

Азия

2,58

Азиатская часть б. СССР

21,4

0,88

20,9

Северная Америка

7,36

17,8

Центральная и Южная Америка

24,9

Африка

28,4

Австралия

0,22

Арктика

0,87

19,4

Антарктида

0,38

0,016

Изучение долевого участия различных производств в гло­бальный поток эмиссии ТМ пока­зывает: 73% меди и 55% кадмия связаны с вы­бросами предприятий по производству меди и ни­келя; 54% эмиссии ртути приходится на сжигание угля; 46% никеля - на сжигание нефтепродуктов; 86% свинца поступает в атмосферу от автотран­спорта (Вронский, 1996). Некоторое количество ТМ в окружающую среду поставляет и сельское хозяй­ство, где применяются пестициды и минеральные удобрения, в частности в суперфосфатах содержат­ся значительные количества хрома, кадмия, ко­бальта, меди, никеля, ванадия, цинка и др.

Заметное действие на окружающую среду оказывают элементы, выбрасываемые в атмосферу через трубы предприятий химической, тяжелой и атомной промышленности. Долевое участие в атмосферном загрязнении тепловых и иных электростанций составляет 27 %, предприятийчерной металлургии – 24,3 %, предприятий по добыче и изготовлению строительных материалов – 8,1 % (Алексеев, 1987; Ильин, 1991). ТМ (за исключением ртути) в основном заносятся в атмосферу в составе аэрозолей. Набор металлов и их содержание в аэрозолях определяются специализацией промышленных и энергетических мероприятий. При сжигании угля, нефти, сланцев вместе с дымом в атмосферу поступают элементы, содержащиеся в этих видах топлива. Так, каменный уголь содержит церий, хром, свинец, ртуть, серебро, олово, титан, а также уран, радий и другие металлы.

Наиболее существенное загрязнение среды вызывают мощные тепловые станции (Майстренко и др., 1996). Ежегодно только при сжигании угля в атмосферу выбрасываетсяртути в 8700 раз больше, чем может быть включено в естественный биогеохимический цикл, урана – в 60, кадмия – в 40, иттрия и циркония – в 10, олова – в 3-4 раза. 90 % кадмия, ртути, олова, титана и цинка, загрязняющих атмосферу, попадает в нее при сжигании каменного угля. Это в значительной степени затрагивает и Республику Бурятия, где предприятия энергетики, использующие каменный уголь являются крупнейшими загрязнителями атмосферы. Среди них (по вкладу в общие выбросы) выделяются Гусиноозерская ГРЭС (30%) и ТЭЦ-1 г. Улан-Удэ (10%).

Заметное загрязнение атмосферного воздуха и почвы происходит за счет транспорта. Большинство ТМ, содержащихся в пылегазовых выбросах промышленных предприятий, как правило, более растворимы, чем природные соединения (Большаков и др., 1993).Среди наиболее активных источников поступления ТМ выделяются крупные индустриально развитые города. Металлы сравнительно быстро накапливаются в почвах городов и крайне медленно из них выводятся: период полуудаления цинка - до 500 лет, кадмия - до 1100 лет, меди - до 1500 лет, свинца - до нескольких тысяч лет (Майстренко и др., 1996). Во многих городах мира высокие темпы загрязнения ТМ привели к нарушению основных агроэкологических функций почв (Орлов и др., 1991; Касимов и др., 1995). Выращивание сельскохозяйственных растений, используемых в пищу вблизи этих территорий потенциально опасно, поскольку культурами накапливаются избыточные количества ТМ, способные приводить к различным заболеваниям человека и животных.

По мнению ряда авторов (Ильин, Степанова, 1979; Зырин, 1985; Горбатов, Зырин, 1987 и др.), степень загрязнения почв ТМ правильнее оценивать по содержанию их наиболее биодоступных мобильных форм. Однако предельно допустимые концентрации (ПДК) подвижных форм большинства ТМ в настоящее время не разработаны. Поэтому критерием для сравнения могут служить литературные данные по уровню их содержания, приводящего к неблагоприятным экологическим последствиям.

Ниже приводим краткое описание свойств металлов, касающихся особенностей их поведения в почвах.

Свинец (Pb ). Атомная масса 207,2. Приоритетный элемент-токсикант. Все растворимые соединения свинца ядовиты. В естественных условиях он существует в основном в форме PbS .Кларк Pb в земной коре 16,0 мг/кг (Виноградов, 1957). По сравнению с другими ТМ он наименее подвижен, причем степень подвижности элемента сильно снижается при известковании почв.Подвижный Pb присутствует в виде комплексов с органическим веществом (60 – 80 % подвижного Pb ). При высоких значениях рН свинец закрепляется в почве химически в виде гидроксида, фосфата, карбоната и Pb -органических комплексов (Цинк и кадмий…, 1992; Тяжелые …, 1997).

Естественное содержание свинца в почвах наследуется от материнских пород и тесно связано с их минералогическим и химическим составом (Беус и др., 1976; Кабата-Пендиас, Пендиас, 1989). Средняя концентрация этого элемента в почвах мира достигает по разным оценка от 10 (Сает и др., 1990) до 35 мг/кг (Bowen , 1979). ПДК свинца для почв в России соответствует 30 мг/кг (Инструктивное…,1990), в Германии - 100 мг/кг (Kloke , 1980).

Высокая концентрация свинца в почвах может быть связана как с природными геохимическими аномалиями, так и с антропогенным воздействием. При техногенном загрязнении наибольшая концентрация элемента, как правило, обнаруживается в верхнем слое почвы. В некоторых промышленных районах она достигает 1000 мг/кг (Добровольский, 1983), а в поверхностном слое почв вокруг предприятий цветной металлургии в Западной Европе – 545 мг/кг (Рэуце, Кырстя, 1986).

Содержание свинца в почвах на территории России существенно варьирует в зависимостиоттипа почвы, близостипромышленных предприятий и естественных геохимическиханомалий. В почвах селитебных зон, особенносвязанных с использованиеми производствомсвинецсодержащих продуктов, содержание данного элемента часто в десятки и более раз превышает ПДК (табл. 1.4). По предварительным оценкамдо 28%территории страны имеет содержание Рb впочве, в среднем,ниже фоновой, а 11% - могут быть отнесены кзоне риска. В то же время, в Российской Федерации проблема загрязнения почв свинцом- преимущественно проблемаселитебных территорий (Снакин и др., 1998).

Кадмий (Cd ). Атомная масса 112,4. Кадмий по химическим свойствам близок к цинку, но отличается от него большей подвижностью в кислых средах и лучшей доступностью для растений. В почвенном растворе металл присутствует в виде Cd 2+ и образовывает комплексные ионы и органические хелаты. Главный фактор, определяющий содержание элемента в почвах при отсутствии антропогенного влияния, – материнские породы (Виноградов, 1962; Минеев и др., 1981; Добровольский, 1983; Ильин, 1991; Цинк и кадмий…, 1992; Кадмий: экологические …, 1994). Кларк кадмия в литосфере 0,13 мг/кг (Кабата-Пендиас, Пендиас, 1989). В почвообразующих породах содержание металла в среднем составляет: в глинах и глинистых сланцах – 0,15 мг/кг, лессах и лессовидных суглинках – 0,08, песках и супесях – 0,03 мг/кг (Цинк и кадмий…, 1992). В четвертичных отложениях Западной Сибири концентрация кадмия изменяется в пределах 0,01-0,08 мг/кг.

Подвижность кадмия в почве зависит от среды и окислительно-восстановительного потенциала (Тяжелые …, 1997).

Среднее содержание кадмия в почвах мира равно 0,5 мг/кг (Сает и др., 1990). Концентрация его в почвенном покрове европейской части России составляет 0,14 мг/кг – в дерново-подзолистой почве, 0,24 мг/кг – в черноземе (Цинк и кадмий…, 1992), 0,07 мг/кг – в основных типах почв Западной Сибири (Ильин, 1991). Ориентировочно-допустимое содержание (ОДК) кадмия для песчаных и супесчаных почв в России составляет 0,5 мг/кг, в Германии ПДК кадмия - 3 мг/кг (Kloke , 1980).

Загрязнение почвенного покрова кадмием считается одним из наиболее опасных экологических явлений, так как он накапливается в растениях выше нормы даже при слабом загрязнении почвы (Кадмий …, 1994; Овчаренко, 1998). Наибольшие концентрации кадмия в верхнем слое почв отмечаются в горнорудных районах – до 469 мг/кг (Кабата-Пендиас, Пендиас, 1989), вокруг цинкоплавилен они достигают 1700 мг/кг (Рэуце, Кырстя, 1986).

Цинк (Zn ). Атомная масса 65,4. Его кларк в земной коре 83 мг/кг. Цинк концентрируется в глинистых отложениях и сланцах в количествах от 80 до 120 мг/кг (Кабата-Пендиас, Пендиас, 1989), в делювиальных, лессовидных и карбонатных суглинистых отложениях Урала, в суглинках Западной Сибири – от 60 до 80 мг/кг.

Важными факторами, влияющими на подвижность Zn в почвах, являются содержание глинистых минералов и величина рН. При повышении рН элемент переходит в органические комплексы и связывается почвой. Ионы цинка также теряют подвижность, попадая в межпакетные пространства кристаллической решетки монтмориллонита. С органическим веществом Zn образует устойчивые формы, поэтому в большинстве случаев он накапливается в горизонтах почв с высоким содержанием гумуса и в торфе.

Причинами повышенного содержания цинка в почвах могут быть как естественные геохимические аномалии, так и техногенное загрязнение. Основными антропогенными источниками его поступления в первую очередь являются предприятия цветной металлургии. Загрязнение почв этим металлом привело в некоторых областях к крайне высокой его аккумуляции в верхнем слое почв – до 66400 мг/кг. В огородных почвах накапливается до 250 и более мг/кг цинка (Кабата-Пендиас, Пендиас, 1989). ОДК цинка для песчаных и супесчаных почв равна 55 мг/кг, германскими учеными рекомендуется ПДК, равная 100 мг/кг (Kloke , 1980).

Медь (Cu ). Атомная масса 63,5. Кларк в земной коре 47 мг/кг (Виноградов, 1962). В химическом отношении медь – малоактивный металл. Основополагающим фактором, влияющим на величину содержания Cu , является концентрация ее в почвообразующих породах (Горюнова и др., 2001). Из изверженных пород наибольшее количество элемента накапливают основные породы - базальты (100-140 мг/кг) и андезиты (20-30 мг/кг). Покровные и лессовидные суглинки (20-40 мг/кг) менее богаты медью. Наименьшее же ее содержание отмечается в песчаниках, известняках и гранитах (5-15 мг/кг) (Ковальский, Андриянова, 1970; Кабата-Пендиас, Пендиас, 1989). Концентрация метала в глинах европейской части территории бывшего СССР достигает 25 мг/кг (Мальгин, 1978; Ковда, 1989), в лессовидных суглинках – 18 мг/кг (Ковда, 1989). Супесчаные и песчаные почвообразующие породы Горного Алтая накапливают в среднем 31 мг/кг меди (Мальгин, 1978),юга Западной Сибири – 19 мг/кг (Ильин, 1973).

В почвах медь является слабомиграционным элементом, хотя содержание подвижной формы бывает достаточно высоким. Количество подвижной меди зависит от многих факторов: химического и минералогического состава материнской породы, рН почвенного раствора, содержания органического вещества и др. (Виноградов, 1957; Пейве, 1961; Ковальский, Андриянова, 1970; Алексеев,1987 и др.). Наибольшее количество меди в почве связано с оксидами железа, марганца, гидроксидами железа и алюминия и, особенно, с монтмориллонитомвермикулитом. Гуминовые и фульвокислоты способны образовывать устойчивые комплексы с медью. При рН 7-8 растворимость меди наименьшая.

Среднее содержание меди в почвах мира 30 мг/кг (Bowen , 1979). Вблизи индустриальных источников загрязнения в некоторых случаях может наблюдаться загрязнение почвы медью до 3500 мг/кг (Кабата-Пендиас, Пендиас, 1989). Среднее содержание металла в почвахцентральных и южных областей бывшего СССР составляет 4,5-10,0 мг/кг, юга Западной Сибири – 30,6 мг/кг (Ильин, 1973), Сибири и Дальнего Востока – 27,8 мг/кг (Макеев, 1973). ПДК меди в России – 55 мг/кг (Инструктивное …, 1990), ОДК для песчаных и супесчаных почв – 33 мг/кг (Контроль…, 1998), в ФРГ – 100 мг/кг (Kloke , 1980).

Никель (Ni ) . Атомная масса 58,7. В континентальных отложениях он присутствует, главным образом, в виде сульфидов и арсенитов, ассоциируется также с карбонатами, фосфатами и силикатами. Кларк элемента в земной коре равен 58 мг/кг (Виноградов, 1957). Наибольшее количество металла накапливают ультраосновные (1400-2000 мг/кг) и основные (200-1000 мг/кг) породы, а осадочные и кислые содержат его в гораздо меньших концентрациях – 5-90 и 5-15 мг/кг, соответственно (Рэуце, Кырстя, 1986; Кабата-Пендиас, Пендиас, 1989). Большое значение в накоплении никеля почвообразующими породами играет их гранулометрический состав. На примере почвообразующих пород Западной Сибири видно, что в более легких породах его содержание наименьшее, в тяжелых – наибольшее: в песках – 17, супесях и легких суглинки –22, средние суглинки – 36, тяжелые суглинки и глины – 46 (Ильин, 2002).

Содержание никеля в почвах в значительной степени зависит от обеспеченности этим элементом почвообразующих пород (Кабата-Пендиас, Пендиас, 1989). Наибольшие концентрации никеля, как правило, наблюдаютсяв глинистых и суглинистых почвах, в почвах, сформированных на основных и вулканических породах ибогатых органическим веществом. Распределение Ni в почвенном профиле определяется содержанием органического вещества, аморфных оксидов и количеством глинистой фракции.

Уровень концентрации никеля в верхнем слое почв зависит также от степени их техногенного загрязнения. В районах с развитой металлообрабатывающей промышленностью в почвах встречается очень высокое накопление никеля: в Канаде его валовое содержание достигает 206-26000 мг/кг, а в Великобритании содержание подвижных форм доходит до 506-600 мг/кг. В почвах Великобритании, Голландии, ФРГ, обработанных осадками сточных вод никель накапливается до84-101 мг/кг (Кабата-Пендиас, Пендиас, 1989). В России (по данным обследования 40-60 % почв сельскохозяйственных угодий) этим элементом загрязнены 2,8 % почвенного покрова. Доля загрязненных Ni почв в ряду других ТМ (Pb , Cd , Zn , Cr , Co , As и др.), является фактически самой значительной и уступает только землям загрязненным медью (3,8%) (Аристархов, Харитонова, 2002). По данным мониторинга земель Государственной станции агрохимической службы «Бурятская» за 1993-1997 гг. на территории Республики Бурятия зарегистрировано превышение ПДК никеля на 1,4 % земель от обследованной территории сельхозугодий, среди которых выделяются почвы Закаменского (загрязнены 20% земель -46 тыс.га) и Хоринского районов (загрязнены 11% земель – 8 тыс.га).

Хром (Cr ). Атомная масса 52. В природных соединениях хром обладает валентностью +3 и +6. Большая часть Cr 3+ присутствует в хромите FeCr 2 O 4 или других минералах шпинелевого ряда, где он замещает Fe и Al , к которым очень близок по своим геохимическим свойствам и ионному радиусу.

Кларк хрома в земной коре – 83 мг/кг. Наибольшие его концентрации среди магматических горных пород характерны для ультраосновных и основных (1600-3400 и 170-200 мг/кг соответственно), меньшие – для средних пород (15-50 мг/кг) и наименьшие – для кислых (4-25 мг/кг). Среди осадочных пород максимальное содержание элемента обнаружено в глинистых осадках и сланцах (60-120 мг/кг), минимальное – в песчаниках и известняках (5-40 мг/кг) (Кабата-Пендиас, Пендиас, 1989). Содержание металла в почвообразующих породах разных регионов весьма разнообразно. В европейской части бывшего СССР его содержание в таких наиболее распространенных почвообразующих породах, как лессы, лессовидные карбонатные и покровные суглинки, составляет в среднем 75-95 мг/кг (Якушевская, 1973). Почвообразующие породы Западной Сибири содержат в среднем 58 мг/кг Cr , причем его количество тесно связано с гранулометрическим составом пород: песчаные и супесчаные породы - 16 мг/кг, а среднесуглинистые и глинистые – около 60 мг/кг (Ильин, Сысо, 2001).

В почвах большая часть хрома присутствует в виде Cr 3+ . В кислой среде ион Cr 3+ инертен, при рН 5,5 почти полностью выпадает в осадок. Ион Cr 6+ крайне не стабилен и легко мобилизуется как в кислых, так и щелочных почвах. Адсорбция хрома глинами зависит от рН среды: при увеличении рН адсорбция Cr 6+ уменьшается, а Cr 3+ увеличивается. Органическое вещество почвы стимулирует восстановление Cr 6+ до Cr 3+ .

Природное содержание хрома в почвах зависит главным образом от его концентрации в почвообразующих породах (Кабата-Пендиас, Пендиас, 1989; Краснокутская и др., 1990), а распределение по почвенному профилю – от особенностей почвообразования, в частности от гранулометрического состава генетических горизонтов. Среднее содержание хрома в почвах – 70 мг/кг (Bowen , 1979). Наибольшее содержание элемента отмечается в почвах, сформированных на богатых этим металлом основных и вулканических породах. Среднее содержание Cr в почвах США составляет 54 мг/кг, Китая – 150 мг/кг (Кабата-Пендиас, Пендиас, 1989), Украины – 400 мг/кг (Беспамятнов, Кротов, 1985). В России его высокие концентрации в почвах в естественных условиях обусловлены обогащенностью почвообразующих пород. Курские черноземы содержат 83 мг/кг хрома, дерново-подзолистые почвы Московской области – 100 мг/кг. В почвах Урала, сформированных на серпентинитах, металла содержится до 10000 мг/кг, Западной Сибири – 86 – 115 мг/кг (Якушевская, 1973; Краснокутская и др., 1990; Ильин, Сысо, 2001).

Вклад антропогенных источников в поступление хрома весьма значителен. Металлический хром в основном используется для хромирования в качестве компонента легированных сталей. Загрязнение почв Cr отмечено за счет выбросов цементных заводов, отвалов железохромовых шлаков, нефтеперегонных заводов, предприятий черной и цветной металлургии, использования в сельском хозяйстве осадков промышленных сточных вод, особенно кожевенных предприятий, и минеральных удобрений. Наивысшие концентрации хрома в техногенно загрязненных почвах достигают 400 и более мг/кг (Кабата-Пендиас, Пендиас, 1989), что особенно характерно крупным городам (табл. 1.4). В Бурятии по данным мониторинга земель, проведенным Государственной станцией агрохимической службы «Бурятская» за 1993-1997 гг.,хромом загрязнены 22 тыс. га. Превышения ПДК в 1,6-1,8 раз отмечены в Джидинском (6,2 тыс. га), Закаменском (17,0 тыс. га) и Тункинском (14,0 тыс. га) районах. ПДК хрома в почвах в России еще не разрабо­таны, а в Германии для почв сельскохозяйственных угодий она со­ставляет 200-500, приусадебных участков – 100 мг/кг(Ильин, Сысо, 2001;Eikmann, Kloke, 1991).

1.3. Влияние тяжелых металлов на микробный ценоз почв

Одним из наиболее эффективно диагностирующих индикаторов загрязнения почв является ее биологическое состояние, которое можно оценить по жизнеспособности населяющих ее почвенных микроорганизмов (Бабьева и др., 1980; Левин и др., 1989; Гузев, Левин, 1991; Колесников, 1995; Звягинцев и др., 1997; Saeki etc . al ., 2002).

Следует также учитывать, что микроорганизмы играют большую роль и в миграции ТМ в почве. В процессе жизнедеятельности они выступают в роли продуцентов, потребителей и транспортирующих агентов в почвенной экосистеме. Многие почвенные грибы проявляют способность к иммобилизации ТМ, закрепляя их в мицелии и временно исключая из круговорота. Кроме того, грибы, выделяя органические кислоты, нейтрализуют действие этих элементов, образуя с ними компоненты, менее токсичные и доступные для растений, чем свободные ионы (Пронина, 2000; Цеолиты, 2000).

Под влиянием повышенных концентраций ТМ наблюдается резкое снижение активности ферментов: амилазы, дегидрогеназы, уреазы, инвертазы, каталазы (Григорян, 1980; Паникова, Перцовская, 1982), а также численности отдельных агрономически ценных групп микроорганизмов (Булавко, 1982; Babich , Stotzky , 1985). ТМ ингибируют процессы минерализации и синтеза различных веществ в почвах (Наплекова, 1982; Евдокимова и др., 1984), подавляют дыхание почвенных микроорганизмов, вызывают микробостатический эффект (Скворцова и др., 1980),могут выступать как мутагенный фактор (Кабата-Пендиас, Пендиас, 1989).При избыточном содержании ТМ в почве снижается активность метаболических процессов, происходят морфологические трансформации в строении репродуктивных органов и другие изменения почвенной биоты. ТМ в значительной степени могут подавлять биохимическую активность и вызывать изменения общей численности почвенных микроорганизмов (Brookes , Mcgrant , 1984).

Загрязнение почв ТМ вызывает определенные изменения в видовом составе комплекса почвенных микроорганизмов. В качестве общей закономерности отмечается значительное сокращение видового богатства и разнообразия комплекса почвенных микромицетов при загрязнении. В микробном сообществе загрязненной почвы появляются необычные для нормальных условий,устойчивые к ТМ виды микромицетов (Кобзев, 1980; Лагаускас и др., 1981; Евдокимова и др., 1984). Толерантность микроорганизмов к загрязнению почвы зависит от их принадлежности к различным систематическим группам. Очень чувствительны к высоким концентрациям ТМ виды рода Bacillus , нитрифицирующие микроорганизмы, несколько более устойчивы – псевдомонады, стрептомицеты и многие виды целлюлозоразрушающих микроорганизмов, наиболее же устойчивы – грибы и актиномицеты (Наплекова, 1982; Цеолиты …, 2000).

При низких концентрациях ТМ наблюдается некоторая стимуляция развития микробного сообщества, затем по мере возрастания концентраций происходит частичное ингибирование и, наконец, полное его подавление. Достоверные изменения видового состава фиксируются при концентрациях ТМ в 50-300 раз выше фоновых.

Степень угнетения жизнедеятельности микробоценоза зависит также от физиолого-биохимических свойств конкретных металлов, загрязняющих почвы. Свинец отрицательно влияет на биотическую деятельность в почве, ингибируя активность ферментов уменьшением интенсивности выделения двуокиси углерода и численности микроорганизмов, вызывает нарушения метаболизма микроорганизмов, особенно процессов дыхания и клеточного деления. Ионы кадмия в концентрации 12 мг/кг нарушают фиксацию атмосферного азота, а также процессы аммонификации, нитрификации и денитрификации (Рэуце, Кырстя, 1986). Наиболее подвержены воздействию кадмия грибы, причем некоторые виды после попадания металла в почву полностью исчезают (Кадмий: экологические …, 1994). Избыток цинка в почвах затрудняет ферментацию разло­жения целлюлозы, дыхание микроорганизмов, действие уреазы и т. д., вследст­вие чего нарушаются процессы преобразования органического вещест­ва в почвах. Кроме того, токсичное влияние ТМ зависит от набора металлов и их взаимного воздействия (антагонистического, синергичного или суммарного) на микробиоту.

Таким образом, под влиянием загрязнения почв ТМ происходят изменения в комплексе почвенных микроорганизмов. Это выражается в снижении видового богатства и разнообразия и увеличения доли толерантных к загрязнению микроорганизмов. От активности почвенных процессов и жизнедеятельности населяющих ее микроорганизмов зависит интенсивность самоочищения почвы от загрязнителей.

Уровень загрязнения почв ТМ влияет на показатели биохимической активности почв, видовую структуру и общую численность микробоценоза (Микроорганизмы …, 1989). В почвах, где содержание тяжелых металлов превышает фоновое в 2-5 и более раз, наиболее заметно изменяются отдельные показатели ферментативной активности, несколько возрастает суммарная биомасса амилолитического микробного сообщества, изменяются и другие микробиологические показатели. При дальнейшем увеличении содержания ТМ до одного порядка обнаруживается достоверное снижение отдельных показателей биохимической активности почвенных микроорганизмов (Григорян, 1980; Паникова, Перцовская, 1982). Происходит перераспределение доминирования в почве амилолитического микробного сообщества. В почве, содержащей ТМ в концентрациях на один-два порядка превышающих фоновые, достоверны изменения уже целой группы микробиологических показателей. Сокращается число видов почвенных микромицетов, и наиболее устойчивые виды начинают абсолютно доминировать. При превышении содержания ТМ в почве над фоном на три порядка наблюдаются резкие изменения практически всех микробиологических показателей. При указанных концентрациях ТМ в почвах происходит ингибирование и гибель нормальной для незагрязненной почвы микробиоты. В то же время активно развивается и даже абсолютно доминирует очень ограниченное число микроорганизмов, резистентных к ТМ, преимущественно микромицетов. Наконец, при концентрациях ТМ в почвах, превышающих фоновые на четыре и более порядков, обнаруживается катастрофическое снижение микробиологической активности почв, граничащее с полной гибелью микроорганизмов.

1.4. Тяжелые металлы в растениях

Растительная пища является основным источником поступления ТМ в организм человека и животных. По разным данным (Панин, 2000; Ильин, Сысо, 2001), с ней поступает от 40 до 80 % ТМ, и только 20-40 % - с воздухом и водой. Поэтому от уровня накопления металлов в растениях, используемых в пищу, в значительной степени зависит здоровье населения.

Химический состав растений, как известно, отражает элементный состав почв. Поэтому избыточное накопление ТМ растениями обусловлено, прежде всего, их высокими концентрациями в почвах. В своей жизнедеятельности растения контактируют только с доступными формами ТМ, количество которых, в свою очередь, тесно связано с буферностью почв. Однако, способность почв связывать и инактивировать ТМ имеет свои пределы, и когда они уже не справляются с поступающим потоком металлов,важное значение приобретает наличие у самих растений физиолого-биохимических механизмов, препятствующих их поступлению.

Механизмы устойчивости растений к избытку ТМ могут проявляться по разным направлениям: одни виды способны накапливать высокие концентрации ТМ, но проявлять к ним толерантность; другие стремятся снизить их поступление путем максимального использования своих барьерных функций. Для большинства растений первым барьерным уровнем являются корни, где задерживается наибольшее количество ТМ, следующий – стебли и листья, и, наконец, последний – органы и части растений, отвечающие за воспроизводительные функции (чаще всего семена и плоды, а также корне- и клубнеплоды и др.). (ГармашГ.А. 1982; Ильин, Степанова, 1982; Гармаш Н.Ю., 1986; Алексеев, 1987; Тяжелые…, 1987; Горюнова, 1995; Орлов и др, 1991 и др.; Ильин, Сысо, 2001). Уровень накопления ТМ разными растениями в зависимости от их генетических и видовых особенностей при одинаковом содержании ТМ в почвах наглядно иллюстрируется данными, представленными в таблице 1.5.

Таблица 1.5

техногенно загрязненной почве, мг/кг сырой массы (приусадебный участок,

г. Белово Кемеровской обл.) (Ильин, Сысо, 2001)

Культура (орган растения)

Томат (плод)

Капуста белокочанная (кочан)

Картофель (клубень)

Морковь (корнеплод)

Свекла (корнеплод)

ДОК (Найштейн и др., 1987)

Примечание: валовое содержание в почве Zn равно 7130, Р b - 434 мг/кг

Однако не всегда эти закономерности повторяются, что, вероятно, связано с условиями произрастания растений и их гене­тической спецификой. Отмечаются случаи, когда разные сорта одной культуры, произрастающие на одинаково загрязненной почве содержали различное количество ТМ. Данный факт, по-видимому, обусловлен присущим всем живым организмам внутривидовым полиморфизмом, способным проявить себя и при техногенном загрязнении природной среды. Это свойство у растений может стать основой генетико-селекционных исследований с целью создания сортов с повышен­ными защитными возможностями по отношению к избыточным концентрациям ТМ (Ильин, Сысо,2001).

Несмотря на существенную изменчивость различных растений к накоплению ТМ, биоаккумуляция элементов имеет определенную тенденцию, позволяющую упорядочить их в несколько групп: 1) Cd , Cs , Rb – элементы интенсивного поглощения; 2) Zn , Mo , Cu , Pb , As , Co – средней степени поглощения; 3) Mn , Ni , Cr – слабого поглощения и 4) Se , Fe , Ba , Te – элементы, труднодоступные растениям (Тяжелые …, 1987;Кадмий …, 1994; Пронина, 2000).

Другой путь поступления ТМ в растения – некорневое поглощение из воздушных потоков. Оно имеет место при значительном выпадении металлов из атмосферы на листовой аппарат, чаще всего вблизи крупных промышленных предприятий. Поступление элементов в растения через листья (или фолиарное поглощение) происходит, главным образом, путем неметаболического проникновения через кутикулу. ТМ, поглощенные листьями, могут переносится в другие органы и ткани и включаться в обмен веществ. Не представляют опасности для человекаметаллы, осаждающиеся с пылевыми выбросами на листьях и стеблях, если перед употреблением в пищу растения тщательно промываются. Однако животные, поедающие такую растительность, могут получить большое количество ТМ.

По мере роста растений элементы перераспределяются по их органам. При этом для меди и цинка устанавливается следующая закономерность в их содержанию: корни > зерно > солома. Для свинца, кадмия и стронция она имеет другой вид: корни > солома > зерно (Тяжелые…, 1997). Известно, что наряду с видовой специфичностью растений в отношении накопления ТМ существуют и определенные общие закономерности. Например, наиболее высокое содержание ТМ обнаружено в листовых овощах и силосных культурах, а наименьшее – в бобовых, злаковых и технических культурах.

Таким образом, рассмотренный материал свидетельствует об огромном вкладе в загрязнение почв и растений ТМ со стороны крупных городов. Поэтому проблема ТМ стала одной из «острых» проблем современного естествознания. Ранее проведенное геохимическое обследование почв г. Улан-Удэ (Белоголовов, 1989) позволяет оценить общий уровень загрязненности 0-5 см слоя почвенного покрова широким спектром химических элементов. Однако остаются практически неизученными почвы садово-дачных кооперативов, приусадебных участков и других земель, где населением выращиваются продовольственные растения, т.е. тех территорий, загрязнение которых может непосредственно затрагивать здоровье населения г. Улан-Удэ. Совершенно нет данных по содержанию подвижных форм ТМ. Поэтому в своих исследованиях мы попытались более детально остановиться на изучении современного состояния загрязненности садово-огородных почв г. Улан-Удэ ТМ, их наиболее опасными для биоты подвижными формами и особенностях распределения и поведения металловв почвенном покрове и профиле основных типов почв г. Улан-Удэ.


Тяжелые металлы в почве

В последнее время в связи с бурным развитием промышленности наблюдается значительное возрастание уровня тяжелых металлов в окружающей среде. Термин "тяжелые металлы" применяется к металлам либо с плотностью, превышающей 5 г/см 3 , либо с атомным номером больше 20. Хотя, существует и другая точка зрения, согласно которой к тяжелым металлам относятся свыше 40 химических элементов с атомными массами, превышающими 50 ат. ед. Среди химических элементов тяжелые металлы наиболее токсичны и уступают по уровню своей опасности только пестицидам. При этом к токсичным относятся следующие химические элементы: Co, Ni, Cu, Zn, Sn, As, Se, Te, Rb, Ag, Cd, Au, Hg, Pb, Sb, Bi, Pt.

Фитотоксичность тяжелых металлов зависит от их химических свойств: валентности, ионного радиуса и способности к комплексообразованию. В большинстве случаев элементы по степени токсичности располагаются в последовательности: Cu> Ni > Cd>Zn> Pb> Hg>Fe> Mo> Mn. Однако этот ряд может несколько изменяться в связи с неодинаковым осаждением элементов почвой и переводом в недоступное для растений состояние, условиями выращивания, физиолого-генетическими особенностями самих растений. Трансформация и миграция тяжелых металлов происходит при непосредственном и косвенном влиянии реакции комплексообразования. При оценке загрязнения окружающей среды необходимо учитывать свойства почвы и, в первую очередь, гранулометрический состав, гумусированность и буферность. Под буферностью понимают способность почв поддерживать концентрацию металлов в почвенном растворе на постоянном уровне.

В почвах тяжелые металлы присутствуют в двух фазах – твердой и в почвенном растворе. Форма существования металлов определяется реакцией среды, химическим и вещественным составом почвенного раствора и, в первую очередь, содержанием органических веществ. Элементы - комплексанты, загрязняющие почву, концентрируются, в основном, в ее верхнем 10 см слое. Однако при подкислении малобуферной почвы значительная доля металлов из обменно-поглощенного состояния переходит в почвенный раствор. Сильной миграционной способностью в кислой среде обладают кадмий, медь, никель, кобальт. Уменьшение рН на 1,8-2 единицы приводит к увеличению подвижности цинка в 3,8-5,4, кадмия - в 4-8, меди - в 2-3 раза..

Таблица 1 Нормативы ПДК (ОДК), фоновые содержания химических элементов в почвах (мг/кг)

Элемент Класс опасности ПДК ОДК по группам почв Фоновое содержание
Валовое содержание Извлекаемые ацетатно-аммонийным буфером (рН=4,8) Песчаные, супесчаные Суглинистые, глинистые
рН кс l < 5,5 рН кс l > 5,5
Pb 1 32 6 32 65 130 26
Zn 1 - 23 55 110 220 50
Cd 1 - - 0,5 1 2 0,3
Cu 2 - 3 33 66 132 27
Ni 2 - 4 20 40 80 20
Со 2 - 5 - - - 7,2

Таким образом, при попадании в почву тяжелые металлы быстро взаимодействуют с органическими лигандами с образованием комплексных соединений. Так, что при низких концентрациях в почве (20-30 мг/кг) приблизительно 30% свинца находится в виде комплексов с органическими веществами. Доля комплексных соединений свинца увеличивается с возрастанием его концентрации до 400 мг/г, а затем уменьшается. Металлы также сорбируются (обменно или необменно) осадками гидроксидов железа и марганца, глинистыми минералами и органическим веществом почвы. Металлы, доступные растениям и способные к вымыванию, находятся в почвенном растворе в виде свободных ионов, комплексов и хелатов.

Поглощение ТМ почвой в большей степени зависит от реакции среды и от того, какие анионы преобладают в почвенном растворе. В кислой среде больше сорбируются медь, свинец и цинк, а в щелочной – интенсивно поглощаются кадмий и кобальт. Медь преимущественно связывается с органическими лигандами и гидроксидами железа.

Таблица 2 Подвижность микроэлементов в различных почвах в зависимости от рН почвенного раствора

Почвенно-климатические факторы часто определяют направление и скорость миграции и трансформации ТМ в почве. Так, условия почвенного и водного режимов лесостепной зоны способствуют интенсивной вертикальной миграции ТМ по профилю почвы, в том числе возможен перенос металлов с потоком воды по трещинам, ходам корней и т.д..

Никель(Ni) – элемент VIII группы периодической системы с атомной массой 58,71. Никель наряду с Mn, Fe, Co и Cu относится к так называемым переходным металлам, соединения которых обладают высокой биологической активностью. Вследствие особенностей строения электронных орбиталей вышеуказанные металлы, в том числе и никель, обладают хорошо выраженной способностью к комплексообразованию. Никель способен формировать стабильные комплексы, например, с цистеином и цитратом, а также со многими органическими и неорганическими лигандами. Геохимический состав материнских пород во многом определяет содержание никеля в почвах. Наибольшее количество никеля содержат почвы, образовавшиеся из основных и ультраосновных пород. По данным некоторых авторов, границы избыточного и токсичного уровней никеля для большинства видов изменяются от 10 до 100 мг/кг. Основная масса никеля закреплена в почве неподвижно, а очень слабая миграция в коллоидном состоянии и в составе механических взвесей не влияет на распределение их по вертикальному профилю и вполне равномерна.

Свинец (Pb). Химизм свинца в почве определяется тонким равновесием противоположно направленных процессов: сорбция-десорбция, растворение-переход в твердое состояние. Попавший в почву с выбросами свинец включается в цикл физических, химических и физико-химических превращений. Сначала доминируют процессы механического перемещения (частицы свинца перемещаются по поверхности и в толще почвы по трещинам) и конвективной диффузии. Затем по мере растворения твердофазных соединений свинца вступают в действие более сложные физико-химические процессы (в частности, процессы ионной диффузии), сопровождающиеся трансформацией поступивших с пылью соединений свинца.

Установлено, что свинец мигрирует как в вертикальном, так и в горизонтальном направлении, причем второй процесс превалирует над первым. За 3 года наблюдений на разнотравном лугу нанесенная локально на поверхность почвы свинцовая пыль переместилась в горизонтальном направлении на 25-35 см, глубина же ее проникновения в толщину почвы составила 10-15 см. Важную роль в миграции свинца играют биологические факторы: корни растений поглощают ионы металлов; во время вегетации происходит их перемещение в толще почвы; при отмирании и разложении растений свинец выделяется в окружающую почвенную массу.

Известно, что почва обладает способностью связывать (сорбировать) поступивший в нее техногенный свинец. Сорбция, как полагают, включает несколько процессов: полный обмен с катионами поглощающего комплекса почв (неспецифическая адсорбция) и ряд реакций комплексообразования свинца с донорами почвенных компонентов (специфическая адсорбция). В почве свинец ассоциируется главным образом с органическим веществом, а также с глинистыми минералами, оксидами марганца, гидроокислами железа и алюминия. Связывая свинец, гумус препятствует его миграции в сопредельные среды и ограничивает поступление в растения. Из глинистых минералов склонностью к сорбции свинца характеризуются иллиты. Повышение рН почвы при известковании ведет к еще большему связыванию свинца почвой за счет образования труднорастворимых соединений (гидроокислов, карбонатов и др.).

Свинец, присутствующий в почве в подвижных формах, со временем фиксируется почвенными компонентами и становится недоступным для растений. По данным отечественных исследователей, наиболее прочно фиксируется свинец черноземных и торфяно-иловых почв.

Кадмий (Cd) Особенность кадмия, отличающая его от других ТМ, заключается в том, что в почвенном растворе он присутствует в основном в виде катионов (Cd 2+), хотя в почве с нейтральной реакцией среды он может образовывать труднорастворимые комплексы с сульфатами, фосфатами или гидроокислами.

По имеющимся данным, концентрация кадмия в почвенных растворах фоновых почв колеблется от 0,2 до 6 мкг/л. В очагах загрязнения почв она возрастает до 300-400 мкг/л..

Известно, что кадмий в почвах очень подвижен, т.е. способен переходить в больших количествах из твердой фазы в жидкую и обратно (что затрудняет прогнозирование его поступления в растение). Механизмы, регулирующие концентрацию кадмия в почвенном растворе, определяются процессами сорбции (под сорбцией понимают собственно адсорбцию, преципитацию и комплексообразование). Кадмий поглощается почвой в меньших количествах, чем другие ТМ. Для характеристики подвижности тяжелых металлов в почве используют отношение концентраций металлов в твердой фазе к таковой в равновесном растворе. Высокие значения этого отношения свидетельствуют о том, что ТМ удерживаются в твердой фазе благодаря реакции сорбции, низкие – благодаря тому, что металлы находятся в растворе, откуда они могут мигрировать в другие среды или вступать в различные реакции (геохимические или биологические). Известно, что ведущим процессом в связывании кадмия является адсорбция глинами. Исследования последних лет показали также большую роль в этом процессе гидроксильных групп, окислов железа и органического вещества. При невысоком уровне загрязнения и нейтральной реакции среды кадмий адсорбируется в основном окислами железа. А в кислой среде (рН=5) в качестве мощного адсорбента начинает выступать органическое вещество. При более низком показателе рН (рН=4) функции адсорбции переходят почти исключительно к органическому веществу. Минеральные компоненты в этих процессах перестают играть какую-либо роль.

Известно, что кадмий не только сорбируется поверхностью почв, но и фиксируется за счет осаждения, коагуляции, межпакетного поглощения глинистыми минералами. Внутрь почвенных частиц он диффундирует по микропорам и другими путями.

Кадмий по-разному закрепляется в почвах разного типа. Пока мало что известно о конкурентных взаимоотношениях кадмия с другими металлами в процессах сорбции в почвенно-поглощающем комплексе. По исследованиям специалистов Технического университета Копенгагена (Дания), в присутствии никеля, кобальта и цинка поглощение кадмия почвой подавлялось. Другие исследования показали, что процессы сорбции кадмия почвой затухают в присутствии ионов хлора. Насыщение почвы ионами Са 2+ приводило к увеличению сорбируемости кадмия. Многие связи кадмия с компонентами почвы оказываются непрочными, в определенных условиях (например, кислая реакция среды) он высвобождается и снова переходит в раствор.

Выявлена роль микроорганизмов в процессе растворения кадмия и перехода его в подвижное состояние. В результате их жизнедеятельности либо образуются водорастворимые металлокомплексы, либо создаются физико-химические условия, благоприятствующие переходу кадмия из твердой фазы в жидкую.

Процессы, происходящие с кадмием в почве (сорбция-десорбция, переход в раствор и пр.) взаимосвязаны и взаимозависимы, от их направленности, интенсивности и глубины зависит поступление этого металла в растения. Известно, что величина сорбции кадмия почвой зависит от величины рН: чем выше рН почвы, тем больше она сорбирует кадмия. Так, по имеющимся данным, в интервале рН от 4 до 7,7 при увеличении рН на единицу сорбционная емкость почв по отношению к кадмию возрастала примерно втрое.

Цинк (Zn). Недостаток цинка может проявляться как на кислых сильнооподзоленных легких почвах, так и на карбонатных, бедных цинком, и на высокогумусированных почвах. Усиливают проявление цинковой недостаточности применение высоких доз фосфорных удобрений и сильное припахивание подпочвы к пахотному горизонту.

Наиболее высокое валовое содержание цинка в тундровых (53-76 мг/кг) и черноземных (24-90 мг/кг) почвах, наиболее низкое - в дерново-подзолистых почвах (20-67 мг/кг). Недостаток цинка чаще всего проявляется на нейтральных и слабощелочных карбонатных почвах. В кислых почвах цинк более подвижен и доступен растениям.

Цинк в почве присутствует в ионной форме, где адсорбируется по катионообменному механизму в кислой или в результате хемосорбции в щелочной среде. Наиболее подвижен ион Zn 2+ . На подвижность цинка в почве в основном влияют величина рН и содержание глинистых минералов. При рН<6 подвижность Zn 2+ возрастает, что приводит к его выщелачиванию. Попадая в межпакетные пространства кристаллической решетки монтмориллонита, ионы цинка теряют свою подвижность. Кроме того, цинк образует устойчивые формы с органическим веществом почвы, поэтому он накапливается в основном в горизонтах почв с высоким содержанием гумуса и в торфе.

Тяжелые металлы в растениях

По мнению А. П. Виноградова (1952), все химические элементы в той или иной степени участвуют в жизнедеятельности растений, и если многие из них считаются физиологически значимыми, то только потому, что для этого пока нет доказательств. Поступая в растение в небольшом количестве и становясь в них составной частью или активаторами ферментов, микроэлемента выполняют сервисные функции в процессах метаболизма. Когда же в среду поступают непривычно высокие концентрации элементов, они становятся токсичными для растений. Проникновение тяжелых металлов в ткани растений в избыточном количестве приводит к нарушению нормальной работы их органов, и это нарушение тем сильнее, чем больше избыток токсикантов. Продуктивность при этом падает. Токсическое действие ТМ проявляется с ранних стадий развития растений, но в различной степени на различных почвах и для разных культур.

Поглощение химических элементов растениями – активный процесс. Пассивная диффузия составляет всего 2-3% от всей массы усвоенных минеральных компонентов. При содержании металлов в почве на уровне фона происходит активное поглощение ионов, и если учитывать малую подвижность данных элементов в почвах, то их поглощению должна предшествовать мобилизация прочносвязанных металлов. При содержании ТМ в корнеобитаемом слое в количествах, значительно превышающих предельные концентрации, при которых металл может быть закреплен за счет внутренних ресурсов почвы, в корни поступают такие количества металлов, которые мембраны удержать уже не могут. В результате этого поступление ионов или соединений элементов перестает регулироваться клеточными механизмами. На кислых почвах идет более интенсивное накопление ТМ, чем на почвах с нейтральной или близкой к нейтральной реакцией среды. Мерой реального участия ионов ТМ в химических реакциях является их активность. Токсическое действие высоких концентраций ТМ на растения может проявляться в нарушении поступления и распределения других химических элементов. Характер взаимодействия ТМ с другими элементами изменяется в зависимости от их концентраций. Миграция и поступление в растение осуществляется в виде комплексных соединений.

В начальный период загрязнения среды тяжелыми металлами, благодаря буферным свойствам почвы, приводящим к инактивации токсикантов, растения практически не будут испытывать неблагоприятного воздействия. Однако защитные функции почвы небезграничны. При повышении уровня загрязнения тяжелыми металлами их инактивация становится неполной и поток ионов атакует корни. Часть ионов растение способно перевести в менее активное состояние еще до проникновения их в корневую систему растений. Это, например, хелатирование с помощью корневых выделений или адсорбирование на внешней поверхности корней с образованием комплексных соединений. Кроме того, как показали вегетационные опыты с заведомо токсичными дозами цинка, никеля, кадмия, кобальта, меди, свинца, корни располагаются в слоях не загрязненные ТМ почвы и в этих вариантах отсутствуют симптомы фототоксичности.

Несмотря на защитные функции корневой системы, ТМ в условиях загрязнения поступают в корень. В этом случае в действие вступают механизмы защиты, благодаря которым происходит специфическое распределение ТМ по органам растений, позволяющее как можно полнее обезопасить их рост и развитие. При этом содержание, например, ТМ в тканях корня и семян в условиях сильно загрязненной среды может различаться в 500-600 раз, что свидетельствует о больших защитных возможностях этого подземного органа растений.

Избыток химических элементов вызывает токсикозы у растений. По мере возрастания концентрации ТМ вначале задерживается рост растений, затем наступает хлороз листьев, который сменяется некрозами, и, наконец, повреждается корневая система. Токсическое действие ТМ может проявляться непосредственно и косвенно. Прямое воздействие избытка ТМ в растительных клетках обусловлено реакциями комплексообразования, в результате которых происходит блокировка ферментов или осаждение белков. Дезактивация ферментативных систем происходит в результате замены металла фермента на металл-загрязнитель. При критическом содержании токсиканта каталитическая способность фермента значительно снижается или полностью блокируется.

Растения - гипераккумуляторы тяжелых металлов

А. П. Виноградов (1952) выделил растения, которые способны концентрировать элементы. Он указал на два типа растений - концентраторов:

1) растения, концентрирующие элементы в массовом масштабе;

2) растения с селективным (видовым) концентрированием.

Растения первого типа обогащаются химическими элементами, если последние содержатся в почве в повышенном количестве. Концентрирование в данном случае вызвано экологическим фактором.

Растениям второго типа свойственно постоянно высокое количество того или иного химического элемента независимо от его содержания в среде. Оно обусловлено генетически закрепленной потребностью.

Рассматривая механизм поглощения тяжелых металлов из почвы в растения, можно говорить о барьерном (не концентрирующем) и безбарьерном (концентрирующем) типах накопления элементов. Барьерное накопление характерно для большинства высших растений и не характерно для мохообразных и лишайниковых. Так, в работе М. А. Тойкка и Л. Н. Потехиной (1980) в качестве растения-концентратора кобальта назван сфагнум (2,66 мг/кг); меди (10,0 мг/кг)- береза, костяника, ландыш; марганца (1100 мг/кг) - черника. Lepp и соавт. (1987) выявили высокие концентрации кадмия в спорофорах гриба Amanita muscaria, растущего в березовых лесах. В спорофорах гриба содержание кадмия составляло 29,9 мг/кг сухой массы, а в почве, на которой они выросли, - 0,4 мг/кг. Существует мнение, что растения, которые являются концентраторами кобальта, отличаются также высокой толерантностью к никелю и способны его накапливать в больших количествах. К ним, в частности, относятся растения семейств Boraginaceae, Brassicaceae, Myrtaceae, Fabaceae, Caryophyllaceae. Концентраторы и сверхконцентраторы никеля обнаружены также среди лекарственных растений. К сверхконцентраторам относятся дынное дерево, красавка беладонна, мачок желтый, пустырник сердечный, страстоцвет мясокрасный и термопсис ланцетовидный. Тип накопления химических элементов, находящихся в больших концентрациях в питающей среде, зависит от фаз вегетации растений. Безбарьерное накопление характерно для фазы проростков, когда у растений нет дифференциации надземных частей на различные органы и в заключительные фазы вегетации - после созревания, а так же в период зимнего покоя, когда безбарьерное накопление может сопровождаться выделением избыточных количеств химических элементов в твердой фазе (Ковалевский, 1991).

Гипераккумулирующие растения обнаружены в семействах Brassicaceae, Euphorbiaceae, Asteraceae, Lamiaceae и Scrophulariaceae (Baker 1995). Наиболее известным и изученным среди них является Brassica juncea (Индийская горчица) - растение, развивающее большую биомассу и способное к аккумуляции Pb, Cr (VI), Cd, Cu, Ni, Zn, 90Sr, B и Se (Nanda Kumar et al. 1995; Salt et al. 1995; Raskin et al. 1994). Из различных видов протестированных растений B. juncea имела наиболее выраженную способность транспортировать свинец в надземную часть, аккумулируя при этом более 1,8% данного элемента в надземных органах (в пересчете на сухую массу). За исключением подсолнечника (Helianthus annuus) и табака (Nicotiana tabacum), другие виды растений, не относящиеся к семейству Brassicaceae, имели коэффициент биологического поглощения менее 1.

Согласно классификации растений по ответной реакции на присутствие в среде произрастания тяжелых металлов, используемой многими зарубежными авторами, растения имеют три основные стратегии для роста на загрязненных металлами почвах:

Исключатели металлов.

Такие растения сохраняют постоянную низкую концентрацию металла несмотря на широкое варьирование его концентраций в почве, удерживая главным образом металл в корнях. Растения-исключатели способны изменять проницаемость мембран и металл-связывающую способность клеточных стенок или выделять большое количество хелатирующих веществ.

Металл-индикаторы.

К ним относятся виды растений, которые активно аккумулируют металл в надземных частях и в целом отражают уровень содержания металла в почве. Они толерантны к существующему уровню концентрации металла благодаря образованию внеклеточных металл-связывающих соединений (хелаторов), или меняют характер компартментации металла путем его запасания в нечувствительных к металлу участках. Аккумулирующие металлы виды растений. Относящиеся к этой группе растения могут накапливать металл в надземной биомассе в концентрациях, намного превышающих таковые в почве. Baker и Brooks дали определение гипераккумуляторам металлов как растениям, содержащим свыше 0,1%, т.е. более чем 1000 мг/г меди, кадмия, хрома, свинца, никеля, кобальта или 1% (более 10 000 мг/г) цинка и марганца в сухой массе. Для редких металлов эта величина составляет более 0,01% в пересчете на сухую массу. Исследователи идентифицируют гипераккумулирующие виды путем сбора растений в областях, где почвы содержат металлы в концентрациях, превышающих фоновые, как в случае с загрязненными районами или в местах выхода рудных тел. Феномен гипераккумуляции ставит перед исследователями много вопросов. Например, какое значение имеет для растений накопление металла в высокотоксичных концентрациях. Окончательного ответа на этот вопрос еще не получено, однако существует несколько основных гипотез. Предполагают, что такие растения обладают усиленной системой поглощения ионов (гипотеза "неумышленного" поглощения) для осуществления определенных физиологических функций, которые еще не исследованы. Считают также, что гипераккумуляция – это один из видов толерантности растений к высокому содержанию металлов в среде произрастания.

Фиторемедиация почв, загрязненных тяжелыми металлами

Наличие повышенных концентраций металлов в почве приводит к их накоплению в дикорастущей флоре и сельскохозяйственных культурах, что сопровождается загрязнением пищевых цепей. Высокие концентрации металлов делают почву неподходящей для роста растений, в связи с чем нарушается биоразнообразие. Загрязненные тяжелыми металлами почвы могут быть восстановлены химическими, физическими и биологическими способами. В целом их можно отнести к двум категориям.

Метод еx-situ требует удаления загрязненной почвы для обработки на или вне участка, и возвращения обработанной почвы на первоначальное место. Последовательность методов ex-situ, используемых для очистки загрязненных почв, включает экскавацию, детоксификацию и/или разложение контаминанта физическими или химическими способами, в результате чего контаминант подвергается стабилизации, осаждению, иммобилизации, сжиганию или разложению.

Метод in-situ предполагает очищение загрязненной почвы без ее экскавации. Reed et al. определили технологии ремедиации in-situ как разложение или трансформацию контаминанта, иммобилизацию для снижения биодоступности и отделение контаминанта от почвы. Метод in-situ предпочтительнее, чем ex-situ, вследствие его низкой стоимости и щадящего влияния на экосистему. Традиционно метод ex-situ предполагает удаление загрязненной тяжелыми металлами почвы и ее захоронение, что не является оптимальным выбором, поскольку захоронение загрязненной почвы вне участка просто переносит проблему загрязнения в другое место; при этом существует определенный риск, связанный с транспортом загрязненной почвы. Разбавление тяжелых металлов до приемлемого уровня путем добавления в загрязненную почву чистой почвы и их смешивания, покрытие почвы инертным материалом может быть альтернативой очистке почвы в пределах загрязненного участка.

Иммобилизация неорганического контаминанта может быть использована в качестве ремедиационного метода для загрязненных тяжелыми металлами почв. Она может достигаться путем коплексации контаминантов, или повышением рН почвы путем известкования. Повышение рН снижает растворимость тяжелых металлов, таких как Cd, Cu, Ni и Zn, в почве. Хотя риск быть поглощенными растениями снижается, концентрация металлов в почве остается неизменной. Большинство из этих традиционных технологий очистки дороги и являются причиной дальнейшего нарушения уже поврежденной окружающей среды. Биоремедиационные технологии, получившие название "фиторемедиация", предполагают использование зеленых растений и ассоциированной с ней микробиоты для in-situ очистки загрязненных почв и подземных вод. Идея использования металлаккумулирующих растений для удаления тяжелых металлов и других соединений была впервые высказана в 1983 году. Термин "фиторемедиация" состоит из греческой приставки фито- (растение), присоединенного к латинскому корню remedium (восстановление).

Ризофильтрация подразумевает использование растений (как наземных, так и водных) для адсорбции, концентрирования и осаждения контаминантов в корнях из загрязненных водных источников с низкой концентрацией контаминанта. Этим способом можно частично обработать промышленные стоки, поверхностные стоки сельскохозяйственных угодий и объектов или кислые дренажные стоки рудников и шахт. Ризофильтрация может быть применена в отношении свинца, кадмия, меди, никеля, цинка и хрома, которые в основном удерживаются корнями. Преимущества ризофильтрации включают ее способность быть использованной как "in-situ", так и "ex-situ" и использовать при этом виды растений, которые не являются гипераккумуляторами. Была изучена способность подсолнечника, индийской горчицы, табака, ржи, шпината и кукурузы удалять свинец из сточных вод, при этом подсолнечник показал наибольшую эффективность очистки.

Фитостабилизация используется, главным образом, для очистки почв, седиментов и осадков сточных вод и зависит от способности корней растений ограничивать подвижность и биодоступность контаминантов в почве. Фитостабилизация осуществляется посредством сорбции, осаждения и комплексации металлов. Растения снижают количество воды, просачивающейся через загрязненную почву, что предотвращает эрозионные процессы, проникновение растворенных контаминантов в поверхностные и грунтовые воды и их распространение в незагрязненные районы. Преимущество фитостабилизации заключается в том, что этот метод не требует удаления загрязненной растительной биомассы. Однако и главным его недостатком является сохранение контаминанта в почве, в связи с чем применение данного способа очистки должно сопровождаться постоянным мониторингом за содержанием и биодоступностью контаминантов.

Фитоэкстракция - наиболее подходящий способ удаления солей тяжелых металлов почв без разрушения почвенной структуры и плодородия. Некоторые авторы называют этот метод фитоаккумуляцией. Так как растение абсорбирует, концентрирует и осаждает токсичные металлы и радионуклиды из загрязненных почв в биомассе, это лучший способ очистки территорий с рассеянным поверхностным загрязнением и относительно низкой концентрацией контаминантов. Существует две основные стратегии фитоэкстракции:

Фитоэкстракция в присутствии хелатов, или индуцированная фитоэкстракция, в которой добавление искусственных хелатов увеличивает подвижность и поглощение металла – контаминанта;

Последовательная фитоэкстракция, в которой удаление металла зависит от естественной способности растений очищать; при этом под контролем находится только число высева (посадки) растений. Открытие гипераккумулирующих видов еще больше содействовало развитию данной технологии. Для того, чтобы сделать эту технологию реально выполнимой, растения должны извлекать большие концентрации тяжелых металлов корнями, перемещать их в надземную биомассу и продуцировать большое количество растительной биомассы. При этом важны такие факторы, как скорость роста, избирательность к элементу, устойчивость к болезням, метод уборки. Однако медленный рост, поверхностно распространяющаяся корневая система, низкая продуктивность биомассы ограничивают применение гипераккумулирующих видов для очистки загрязненных тяжелыми металлами территорий.

Фитоиспарение включает использование растений для выноса контаминантов из почвы, трансформации их в летучую форму и транспирации в атмосферу. Фитоиспарение используется в основном для удаления ртути, при этом ион ртути трансформируется в менее токсичную элементарную ртуть. Недостатком является то, что ртуть выброшенная в атмосферу, вероятнее всего повторно возвращается путем осаждения и затем вновь попадает в экосистему. Американские исследователи обнаружили, что некоторые растения, произрастающие на субстрате, богатом селеном, продуцируют летучий селен в форме диметилселенида и диметидиселенида. Есть сообщения, что фитоиспарение было успешно применено для трития, радиоактивного изотопа водорода), который распадался до стабильного гелия с периодом полураспада около 12 лет. Фитодеградация. В фиторемедиации органических веществ растительный метаболизм участвует в восстановлении контаминанта путем трансформации, разложения, стабилизации или испарения загрязняющих веществ из почвы и подземных вод. Фитодеградация представляет собой разложение органических веществ, поглощенных растением, до более простых молекул, которые включаются в состав растительных тканей.

Растения содержат ферменты, которые могут подвергнуть распаду и конвертировать оружейные отходы, хлорсодержащие растворители, такие как трихлорэтилен и другие гербициды. Ферментами обычно выступают дегалогеназы, оксигеназы и редуктазы. Ризодеградация – это разложение органических соединений в почве посредством микробиальной деятельности в корневой зоне (ризосфере) и является намного более медленным процессом, чем фитодеградация. Приведенные методы фиторемедиации могут быть использованы комплексно. Итак, из обзора литературы видно, что в настоящее время фиторемедиация – это быстро развивающаяся область исследований. За последние десять лет исследователями из многих стран мира получено экспериментальное подтверждение, в том числе в полевых условиях, перспективности данного метода для очистки загрязненных сред от органических, неорганических контаминантов и радионуклидов.

Этот экологичный и недорогой способ очистки загрязненных территорий является реальной альтернативой традиционным способам восстановления нарушенных и загрязненных земель. В России коммерческое применение фиторемедиации для почв, загрязненных тяжелыми металлами и различными органическими соединениями, такими, как нефтепродукты, находится в начальной стадии. Необходимы масштабные исследования, направленные на поиск быстрорастущих и обладающих выраженной способностью к накоплению контаминантов растений из числа культурных и дикорастущих видов, характерных для того или иного региона, экспериментальное подтверждение их высокого фиторемедиационного потенциала, изучение способов его повышения. Отдельным важным направлением исследований является изучение вопроса утилизации загрязненной растительной биомассы с целью предотвращения повторного загрязнения различных компонентов экосистемы и попадания контаминантов в пищевые цепи



Тяжелые металлы в почве

В последнее время в связи с бурным развитием промышленности наблюдается значительное возрастание уровня тяжелых металлов в окружающей среде. Термин "тяжелые металлы" применяется к металлам либо с плотностью, превышающей 5 г/см 3 , либо с атомным номером больше 20. Хотя, существует и другая точка зрения, согласно которой к тяжелым металлам относятся свыше 40 химических элементов с атомными массами, превышающими 50 ат. ед. Среди химических элементов тяжелые металлы наиболее токсичны и уступают по уровню своей опасности только пестицидам. При этом к токсичным относятся следующие химические элементы: Co, Ni, Cu, Zn, Sn, As, Se, Te, Rb, Ag, Cd, Au, Hg, Pb, Sb, Bi, Pt.

Фитотоксичность тяжелых металлов зависит от их химических свойств: валентности, ионного радиуса и способности к комплексообразованию. В большинстве случаев элементы по степени токсичности располагаются в последовательности: Cu> Ni > Cd>Zn> Pb> Hg>Fe> Mo> Mn. Однако этот ряд может несколько изменяться в связи с неодинаковым осаждением элементов почвой и переводом в недоступное для растений состояние, условиями выращивания, физиолого-генетическими особенностями самих растений. Трансформация и миграция тяжелых металлов происходит при непосредственном и косвенном влиянии реакции комплексообразования. При оценке загрязнения окружающей среды необходимо учитывать свойства почвы и, в первую очередь, гранулометрический состав, гумусированность и буферность. Под буферностью понимают способность почв поддерживать концентрацию металлов в почвенном растворе на постоянном уровне.

В почвах тяжелые металлы присутствуют в двух фазах – твердой и в почвенном растворе. Форма существования металлов определяется реакцией среды, химическим и вещественным составом почвенного раствора и, в первую очередь, содержанием органических веществ. Элементы - комплексанты, загрязняющие почву, концентрируются, в основном, в ее верхнем 10 см слое. Однако при подкислении малобуферной почвы значительная доля металлов из обменно-поглощенного состояния переходит в почвенный раствор. Сильной миграционной способностью в кислой среде обладают кадмий, медь, никель, кобальт. Уменьшение рН на 1,8-2 единицы приводит к увеличению подвижности цинка в 3,8-5,4, кадмия - в 4-8, меди - в 2-3 раза..

Таблица 1 Нормативы ПДК (ОДК), фоновые содержания химических элементов в почвах (мг/кг)

Элемент Класс опасности ПДК ОДК по группам почв Фоновое содержание
Валовое содержание Извлекаемые ацетатно-аммонийным буфером (рН=4,8) Песчаные, супесчаные Суглинистые, глинистые
рН кс l < 5,5 рН кс l > 5,5
Pb 1 32 6 32 65 130 26
Zn 1 - 23 55 110 220 50
Cd 1 - - 0,5 1 2 0,3
Cu 2 - 3 33 66 132 27
Ni 2 - 4 20 40 80 20
Со 2 - 5 - - - 7,2

Таким образом, при попадании в почву тяжелые металлы быстро взаимодействуют с органическими лигандами с образованием комплексных соединений. Так, что при низких концентрациях в почве (20-30 мг/кг) приблизительно 30% свинца находится в виде комплексов с органическими веществами. Доля комплексных соединений свинца увеличивается с возрастанием его концентрации до 400 мг/г, а затем уменьшается. Металлы также сорбируются (обменно или необменно) осадками гидроксидов железа и марганца, глинистыми минералами и органическим веществом почвы. Металлы, доступные растениям и способные к вымыванию, находятся в почвенном растворе в виде свободных ионов, комплексов и хелатов.

Поглощение ТМ почвой в большей степени зависит от реакции среды и от того, какие анионы преобладают в почвенном растворе. В кислой среде больше сорбируются медь, свинец и цинк, а в щелочной – интенсивно поглощаются кадмий и кобальт. Медь преимущественно связывается с органическими лигандами и гидроксидами железа.

Таблица 2 Подвижность микроэлементов в различных почвах в зависимости от рН почвенного раствора

Почвенно-климатические факторы часто определяют направление и скорость миграции и трансформации ТМ в почве. Так, условия почвенного и водного режимов лесостепной зоны способствуют интенсивной вертикальной миграции ТМ по профилю почвы, в том числе возможен перенос металлов с потоком воды по трещинам, ходам корней и т.д..

Никель(Ni) – элемент VIII группы периодической системы с атомной массой 58,71. Никель наряду с Mn, Fe, Co и Cu относится к так называемым переходным металлам, соединения которых обладают высокой биологической активностью. Вследствие особенностей строения электронных орбиталей вышеуказанные металлы, в том числе и никель, обладают хорошо выраженной способностью к комплексообразованию. Никель способен формировать стабильные комплексы, например, с цистеином и цитратом, а также со многими органическими и неорганическими лигандами. Геохимический состав материнских пород во многом определяет содержание никеля в почвах. Наибольшее количество никеля содержат почвы, образовавшиеся из основных и ультраосновных пород. По данным некоторых авторов, границы избыточного и токсичного уровней никеля для большинства видов изменяются от 10 до 100 мг/кг. Основная масса никеля закреплена в почве неподвижно, а очень слабая миграция в коллоидном состоянии и в составе механических взвесей не влияет на распределение их по вертикальному профилю и вполне равномерна.

Свинец (Pb). Химизм свинца в почве определяется тонким равновесием противоположно направленных процессов: сорбция-десорбция, растворение-переход в твердое состояние. Попавший в почву с выбросами свинец включается в цикл физических, химических и физико-химических превращений. Сначала доминируют процессы механического перемещения (частицы свинца перемещаются по поверхности и в толще почвы по трещинам) и конвективной диффузии. Затем по мере растворения твердофазных соединений свинца вступают в действие более сложные физико-химические процессы (в частности, процессы ионной диффузии), сопровождающиеся трансформацией поступивших с пылью соединений свинца.

Установлено, что свинец мигрирует как в вертикальном, так и в горизонтальном направлении, причем второй процесс превалирует над первым. За 3 года наблюдений на разнотравном лугу нанесенная локально на поверхность почвы свинцовая пыль переместилась в горизонтальном направлении на 25-35 см, глубина же ее проникновения в толщину почвы составила 10-15 см. Важную роль в миграции свинца играют биологические факторы: корни растений поглощают ионы металлов; во время вегетации происходит их перемещение в толще почвы; при отмирании и разложении растений свинец выделяется в окружающую почвенную массу.

Известно, что почва обладает способностью связывать (сорбировать) поступивший в нее техногенный свинец. Сорбция, как полагают, включает несколько процессов: полный обмен с катионами поглощающего комплекса почв (неспецифическая адсорбция) и ряд реакций комплексообразования свинца с донорами почвенных компонентов (специфическая адсорбция). В почве свинец ассоциируется главным образом с органическим веществом, а также с глинистыми минералами, оксидами марганца, гидроокислами железа и алюминия. Связывая свинец, гумус препятствует его миграции в сопредельные среды и ограничивает поступление в растения. Из глинистых минералов склонностью к сорбции свинца характеризуются иллиты. Повышение рН почвы при известковании ведет к еще большему связыванию свинца почвой за счет образования труднорастворимых соединений (гидроокислов, карбонатов и др.).

Свинец, присутствующий в почве в подвижных формах, со временем фиксируется почвенными компонентами и становится недоступным для растений. По данным отечественных исследователей, наиболее прочно фиксируется свинец черноземных и торфяно-иловых почв.

Кадмий (Cd) Особенность кадмия, отличающая его от других ТМ, заключается в том, что в почвенном растворе он присутствует в основном в виде катионов (Cd 2+), хотя в почве с нейтральной реакцией среды он может образовывать труднорастворимые комплексы с сульфатами, фосфатами или гидроокислами.

По имеющимся данным, концентрация кадмия в почвенных растворах фоновых почв колеблется от 0,2 до 6 мкг/л. В очагах загрязнения почв она возрастает до 300-400 мкг/л..

Известно, что кадмий в почвах очень подвижен, т.е. способен переходить в больших количествах из твердой фазы в жидкую и обратно (что затрудняет прогнозирование его поступления в растение). Механизмы, регулирующие концентрацию кадмия в почвенном растворе, определяются процессами сорбции (под сорбцией понимают собственно адсорбцию, преципитацию и комплексообразование). Кадмий поглощается почвой в меньших количествах, чем другие ТМ. Для характеристики подвижности тяжелых металлов в почве используют отношение концентраций металлов в твердой фазе к таковой в равновесном растворе. Высокие значения этого отношения свидетельствуют о том, что ТМ удерживаются в твердой фазе благодаря реакции сорбции, низкие – благодаря тому, что металлы находятся в растворе, откуда они могут мигрировать в другие среды или вступать в различные реакции (геохимические или биологические). Известно, что ведущим процессом в связывании кадмия является адсорбция глинами. Исследования последних лет показали также большую роль в этом процессе гидроксильных групп, окислов железа и органического вещества. При невысоком уровне загрязнения и нейтральной реакции среды кадмий адсорбируется в основном окислами железа. А в кислой среде (рН=5) в качестве мощного адсорбента начинает выступать органическое вещество. При более низком показателе рН (рН=4) функции адсорбции переходят почти исключительно к органическому веществу. Минеральные компоненты в этих процессах перестают играть какую-либо роль.

Известно, что кадмий не только сорбируется поверхностью почв, но и фиксируется за счет осаждения, коагуляции, межпакетного поглощения глинистыми минералами. Внутрь почвенных частиц он диффундирует по микропорам и другими путями.

Кадмий по-разному закрепляется в почвах разного типа. Пока мало что известно о конкурентных взаимоотношениях кадмия с другими металлами в процессах сорбции в почвенно-поглощающем комплексе. По исследованиям специалистов Технического университета Копенгагена (Дания), в присутствии никеля, кобальта и цинка поглощение кадмия почвой подавлялось. Другие исследования показали, что процессы сорбции кадмия почвой затухают в присутствии ионов хлора. Насыщение почвы ионами Са 2+ приводило к увеличению сорбируемости кадмия. Многие связи кадмия с компонентами почвы оказываются непрочными, в определенных условиях (например, кислая реакция среды) он высвобождается и снова переходит в раствор.

Выявлена роль микроорганизмов в процессе растворения кадмия и перехода его в подвижное состояние. В результате их жизнедеятельности либо образуются водорастворимые металлокомплексы, либо создаются физико-химические условия, благоприятствующие переходу кадмия из твердой фазы в жидкую.

Процессы, происходящие с кадмием в почве (сорбция-десорбция, переход в раствор и пр.) взаимосвязаны и взаимозависимы, от их направленности, интенсивности и глубины зависит поступление этого металла в растения. Известно, что величина сорбции кадмия почвой зависит от величины рН: чем выше рН почвы, тем больше она сорбирует кадмия. Так, по имеющимся данным, в интервале рН от 4 до 7,7 при увеличении рН на единицу сорбционная емкость почв по отношению к кадмию возрастала примерно втрое.

Цинк (Zn). Недостаток цинка может проявляться как на кислых сильнооподзоленных легких почвах, так и на карбонатных, бедных цинком, и на высокогумусированных почвах. Усиливают проявление цинковой недостаточности применение высоких доз фосфорных удобрений и сильное припахивание подпочвы к пахотному горизонту.

Наиболее высокое валовое содержание цинка в тундровых (53-76 мг/кг) и черноземных (24-90 мг/кг) почвах, наиболее низкое - в дерново-подзолистых почвах (20-67 мг/кг). Недостаток цинка чаще всего проявляется на нейтральных и слабощелочных карбонатных почвах. В кислых почвах цинк более подвижен и доступен растениям.

Цинк в почве присутствует в ионной форме, где адсорбируется по катионообменному механизму в кислой или в результате хемосорбции в щелочной среде. Наиболее подвижен ион Zn 2+ . На подвижность цинка в почве в основном влияют величина рН и содержание глинистых минералов. При рН<6 подвижность Zn 2+ возрастает, что приводит к его выщелачиванию. Попадая в межпакетные пространства кристаллической решетки монтмориллонита, ионы цинка теряют свою подвижность. Кроме того, цинк образует устойчивые формы с органическим веществом почвы, поэтому он накапливается в основном в горизонтах почв с высоким содержанием гумуса и в торфе.

Тяжелые металлы в растениях

По мнению А. П. Виноградова (1952), все химические элементы в той или иной степени участвуют в жизнедеятельности растений, и если многие из них считаются физиологически значимыми, то только потому, что для этого пока нет доказательств. Поступая в растение в небольшом количестве и становясь в них составной частью или активаторами ферментов, микроэлемента выполняют сервисные функции в процессах метаболизма. Когда же в среду поступают непривычно высокие концентрации элементов, они становятся токсичными для растений. Проникновение тяжелых металлов в ткани растений в избыточном количестве приводит к нарушению нормальной работы их органов, и это нарушение тем сильнее, чем больше избыток токсикантов. Продуктивность при этом падает. Токсическое действие ТМ проявляется с ранних стадий развития растений, но в различной степени на различных почвах и для разных культур.

Поглощение химических элементов растениями – активный процесс. Пассивная диффузия составляет всего 2-3% от всей массы усвоенных минеральных компонентов. При содержании металлов в почве на уровне фона происходит активное поглощение ионов, и если учитывать малую подвижность данных элементов в почвах, то их поглощению должна предшествовать мобилизация прочносвязанных металлов. При содержании ТМ в корнеобитаемом слое в количествах, значительно превышающих предельные концентрации, при которых металл может быть закреплен за счет внутренних ресурсов почвы, в корни поступают такие количества металлов, которые мембраны удержать уже не могут. В результате этого поступление ионов или соединений элементов перестает регулироваться клеточными механизмами. На кислых почвах идет более интенсивное накопление ТМ, чем на почвах с нейтральной или близкой к нейтральной реакцией среды. Мерой реального участия ионов ТМ в химических реакциях является их активность. Токсическое действие высоких концентраций ТМ на растения может проявляться в нарушении поступления и распределения других химических элементов. Характер взаимодействия ТМ с другими элементами изменяется в зависимости от их концентраций. Миграция и поступление в растение осуществляется в виде комплексных соединений.

В начальный период загрязнения среды тяжелыми металлами, благодаря буферным свойствам почвы, приводящим к инактивации токсикантов, растения практически не будут испытывать неблагоприятного воздействия. Однако защитные функции почвы небезграничны. При повышении уровня загрязнения тяжелыми металлами их инактивация становится неполной и поток ионов атакует корни. Часть ионов растение способно перевести в менее активное состояние еще до проникновения их в корневую систему растений. Это, например, хелатирование с помощью корневых выделений или адсорбирование на внешней поверхности корней с образованием комплексных соединений. Кроме того, как показали вегетационные опыты с заведомо токсичными дозами цинка, никеля, кадмия, кобальта, меди, свинца, корни располагаются в слоях не загрязненные ТМ почвы и в этих вариантах отсутствуют симптомы фототоксичности.

Несмотря на защитные функции корневой системы, ТМ в условиях загрязнения поступают в корень. В этом случае в действие вступают механизмы защиты, благодаря которым происходит специфическое распределение ТМ по органам растений, позволяющее как можно полнее обезопасить их рост и развитие. При этом содержание, например, ТМ в тканях корня и семян в условиях сильно загрязненной среды может различаться в 500-600 раз, что свидетельствует о больших защитных возможностях этого подземного органа растений.

Избыток химических элементов вызывает токсикозы у растений. По мере возрастания концентрации ТМ вначале задерживается рост растений, затем наступает хлороз листьев, который сменяется некрозами, и, наконец, повреждается корневая система. Токсическое действие ТМ может проявляться непосредственно и косвенно. Прямое воздействие избытка ТМ в растительных клетках обусловлено реакциями комплексообразования, в результате которых происходит блокировка ферментов или осаждение белков. Дезактивация ферментативных систем происходит в результате замены металла фермента на металл-загрязнитель. При критическом содержании токсиканта каталитическая способность фермента значительно снижается или полностью блокируется.

Растения - гипераккумуляторы тяжелых металлов

А. П. Виноградов (1952) выделил растения, которые способны концентрировать элементы. Он указал на два типа растений - концентраторов: 1) растения, концентрирующие элементы в массовом масштабе; 2) растения с селективным (видовым) концентрированием. Растения первого типа обогащаются химическими элементами, если последние содержатся в почве в повышенном количестве. Концентрирование в данном случае вызвано экологическим фактором. Растениям второго типа свойственно постоянно высокое количество того или иного химического элемента независимо от его содержания в среде. Оно обусловлено генетически закрепленной потребностью.

Рассматривая механизм поглощения тяжелых металлов из почвы в растения, можно говорить о барьерном (не концентрирующем) и безбарьерном (концентрирующем) типах накопления элементов. Барьерное накопление характерно для большинства высших растений и не характерно для мохообразных и лишайниковых. Так, в работе М. А. Тойкка и Л. Н. Потехиной (1980) в качестве растения-концентратора кобальта назван сфагнум (2,66 мг/кг); меди (10,0 мг/кг)- береза, костяника, ландыш; марганца (1100 мг/кг) - черника. Lepp и соавт. (1987) выявили высокие концентрации кадмия в спорофорах гриба Amanita muscaria, растущего в березовых лесах. В спорофорах гриба содержание кадмия составляло 29,9 мг/кг сухой массы, а в почве, на которой они выросли, - 0,4 мг/кг. Существует мнение, что растения, которые являются концентраторами кобальта, отличаются также высокой толерантностью к никелю и способны его накапливать в больших количествах. К ним, в частности, относятся растения семейств Boraginaceae, Brassicaceae, Myrtaceae, Fabaceae, Caryophyllaceae. Концентраторы и сверхконцентраторы никеля обнаружены также среди лекарственных растений. К сверхконцентраторам относятся дынное дерево, красавка беладонна, мачок желтый, пустырник сердечный, страстоцвет мясокрасный и термопсис ланцетовидный. Тип накопления химических элементов, находящихся в больших концентрациях в питающей среде, зависит от фаз вегетации растений. Безбарьерное накопление характерно для фазы проростков, когда у растений нет дифференциации надземных частей на различные органы и в заключительные фазы вегетации - после созревания, а так же в период зимнего покоя, когда безбарьерное накопление может сопровождаться выделением избыточных количеств химических элементов в твердой фазе (Ковалевский, 1991).

Гипераккумулирующие растения обнаружены в семействах Brassicaceae, Euphorbiaceae, Asteraceae, Lamiaceae и Scrophulariaceae (Baker 1995). Наиболее известным и изученным среди них является Brassica juncea (Индийская горчица) - растение, развивающее большую биомассу и способное к аккумуляции Pb, Cr (VI), Cd, Cu, Ni, Zn, 90Sr, B и Se (Nanda Kumar et al. 1995; Salt et al. 1995; Raskin et al. 1994). Из различных видов протестированных растений B. juncea имела наиболее выраженную способность транспортировать свинец в надземную часть, аккумулируя при этом более 1,8% данного элемента в надземных органах (в пересчете на сухую массу). За исключением подсолнечника (Helianthus annuus) и табака (Nicotiana tabacum), другие виды растений, не относящиеся к семейству Brassicaceae, имели коэффициент биологического поглощения менее 1.

Согласно классификации растений по ответной реакции на присутствие в среде произрастания тяжелых металлов, используемой многими зарубежными авторами, растения имеют три основные стратегии для роста на загрязненных металлами почвах:

Исключатели металлов. Такие растения сохраняют постоянную низкую концентрацию металла несмотря на широкое варьирование его концентраций в почве, удерживая главным образом металл в корнях. Растения-исключатели способны изменять проницаемость мембран и металл-связывающую способность клеточных стенок или выделять большое количество хелатирующих веществ.

Металл-индикаторы. К ним относятся виды растений, которые активно аккумулируют металл в надземных частях и в целом отражают уровень содержания металла в почве. Они толерантны к существующему уровню концентрации металла благодаря образованию внеклеточных металл-связывающих соединений (хелаторов), или меняют характер компартментации металла путем его запасания в нечувствительных к металлу участках. Аккумулирующие металлы виды растений. Относящиеся к этой группе растения могут накапливать металл в надземной биомассе в концентрациях, намного превышающих таковые в почве. Baker и Brooks дали определение гипераккумуляторам металлов как растениям, содержащим свыше 0,1%, т.е. более чем 1000 мг/г меди, кадмия, хрома, свинца, никеля, кобальта или 1% (более 10 000 мг/г) цинка и марганца в сухой массе. Для редких металлов эта величина составляет более 0,01% в пересчете на сухую массу. Исследователи идентифицируют гипераккумулирующие виды путем сбора растений в областях, где почвы содержат металлы в концентрациях, превышающих фоновые, как в случае с загрязненными районами или в местах выхода рудных тел. Феномен гипераккумуляции ставит перед исследователями много вопросов. Например, какое значение имеет для растений накопление металла в высокотоксичных концентрациях. Окончательного ответа на этот вопрос еще не получено, однако существует несколько основных гипотез. Предполагают, что такие растения обладают усиленной системой поглощения ионов (гипотеза "неумышленного" поглощения) для осуществления определенных физиологических функций, которые еще не исследованы. Считают также, что гипераккумуляция – это один из видов толерантности растений к высокому содержанию металлов в среде произрастания.



Рассказать друзьям