Какое из уравнений определяет плоскость. Уравнение плоскости через определитель

💖 Нравится? Поделись с друзьями ссылкой

Все уравнения плоскости, которые разобраны в следующих пунктах могут быть получены из общего уравнения плоскости, а также приведены к общему уравнению плоскости. Таким образом, когда говорят об уравнении плоскости, то имеют в виду общее уравнение плоскости, если не оговорено иное.

Уравнение плоскости в отрезках.

Уравнение плоскости вида , где a , b и c – отличные от нуля действительные числа, называется уравнением плоскости в отрезках .

Такое название не случайно. Абсолютные величины чисел a , b и c равны длинам отрезков, которые отсекает плоскость на координатных осях Ox , Oy и Oz соответственно, считая от начала координат. Знак чисел a , b и c показывает, в каком направлении (положительном или отрицательном) следует откладывать отрезки на координатных осях.

Для примера построим в прямоугольной системе координат Oxyz плоскость, определенную уравнением плоскости в отрезках . Для этого отмечаем точку, удаленную на 5 единиц от начала координат в отрицательном направлении оси абсцисс, на 4 единицы в отрицательном направлении оси ординат и на 4 единицы в положительном направлении оси аппликат. Осталось соединить эти точки прямыми линиями. Плоскость полученного треугольника и есть плоскость, соответствующая уравнению плоскости в отрезках вида .

Для получения более полной информации обращайтесь к статье уравнение плоскости в отрезках , там показано приведение уравнения плоскости в отрезках к общему уравнению плоскости, там же Вы также найдете подробные решения характерных примеров и задач.

Нормальное уравнение плоскости.

Общее уравнение плоскости вида называют нормальным уравнением плоскости , если равна единице, то есть, , и .

Часто можно видеть, что нормальное уравнение плоскости записывают в виде . Здесь - направляющие косинусы нормального вектора данной плоскости единичной длины, то есть , а p – неотрицательное число, равное расстоянию от начала координат до плоскости.

Нормальное уравнение плоскости в прямоугольной системе координат Oxyz определяет плоскость, которая удалена от начала координат на расстояние p в положительном направлении нормального вектора этой плоскости . Если p=0 , то плоскость проходит через начало координат.

Приведем пример нормального уравнения плоскости.

Пусть плоскость задана в прямоугольной системе координат Oxyz общим уравнение плоскости вида . Это общее уравнение плоскости является нормальным уравнением плоскости. Действительно, и нормальный вектор этой плоскости имеет длину равную единице, так как .

Уравнение плоскости в нормальном виде позволяет находить расстояние от точки до плоскости .

Рекомендуем более детально разобраться с данным видом уравнения плоскости, посмотреть подробные решения характерных примеров и задач, а также научиться приводить общее уравнение плоскости к нормальному виду. Это Вы можете сделать, обратившись к статье .

Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

В этом уроке мы рассмотрим, как с помощью определителя составить уравнение плоскости . Если вы не знаете, что такое определитель, зайдите в первую часть урока - «Матрицы и определители ». Иначе вы рискуете ничего не понять в сегодняшнем материале.

Уравнение плоскости по трем точкам

Зачем вообще нужно уравнение плоскости? Все просто: зная его, мы легко высчитаем углы, расстояния и прочую хрень в задаче C2. В общем, без этого уравнения не обойтись. Поэтому сформулируем задачу:

Задача. В пространстве даны три точки, не лежащие на одной прямой. Их координаты:

M = (x 1 , y 1 , z 1);
N = (x 2 , y 2 , z 2);
K = (x 3 , y 3 , z 3);

Требуется составить уравнение плоскости, проходящей через эти три точки. Причем уравнение должно иметь вид:

Ax + By + Cz + D = 0

где числа A , B , C и D - коэффициенты, которые, собственно, и требуется найти.

Ну и как получить уравнение плоскости, если известны только координаты точек? Самый простой способ - подставить координаты в уравнение Ax + By + Cz + D = 0. Получится система из трех уравнений, которая легко решается.

Многие ученики считают такое решение крайне утомительным и ненадежным. Прошлогодний ЕГЭ по математике показал, что вероятность допустить вычислительную ошибку действительно велика.

Поэтому наиболее продвинутые учителя стали искать более простые и изящные решения. И ведь нашли! Правда, полученный прием скорее относится к высшей математике. Лично мне пришлось перерыть весь Федеральный перечень учебников, чтобы убедиться, что мы вправе применять этот прием без каких-либо обоснований и доказательств.

Уравнение плоскости через определитель

Хватит лирики, приступаем к делу. Для начала - теорема о том, как связаны определитель матрицы и уравнение плоскости.

Теорема. Пусть даны координаты трех точек, через которые надо провести плоскость: M = (x 1 , y 1 , z 1); N = (x 2 , y 2 , z 2); K = (x 3 , y 3 , z 3). Тогда уравнение этой плоскости можно записать через определитель:

Для примера попробуем найти пару плоскостей, которые реально встречаются в задачах С2. Взгляните, как быстро все считается:

A 1 = (0, 0, 1);
B = (1, 0, 0);
C 1 = (1, 1, 1);

Составляем определитель и приравниваем его к нулю:


Раскрываем определитель:

a = 1 · 1 · (z − 1) + 0 · 0 · x + (−1) · 1 · y = z − 1 − y;
b = (−1) · 1 · x + 0 · 1 · (z − 1) + 1 · 0 · y = −x;
d = a − b = z − 1 − y − (−x ) = z − 1 − y + x = x − y + z − 1;
d = 0 ⇒ x − y + z − 1 = 0;

Как видите, при расчете числа d я немного «причесал» уравнение, чтобы переменные x , y и z шли в правильной последовательности. Вот и все! Уравнение плоскости готово!

Задача. Составьте уравнение плоскости, проходящей через точки:

A = (0, 0, 0);
B 1 = (1, 0, 1);
D 1 = (0, 1, 1);

Сразу подставляем координаты точек в определитель:

Снова раскрываем определитель:

a = 1 · 1 · z + 0 · 1 · x + 1 · 0 · y = z;
b = 1 · 1 · x + 0 · 0 · z + 1 · 1 · y = x + y;
d = a − b = z − (x + y ) = z − x − y;
d = 0 ⇒ z − x − y = 0 ⇒ x + y − z = 0;

Итак, уравнение плоскости снова получено! Опять же, на последнем шаге пришлось поменять в нем знаки, чтобы получить более «красивую» формулу. Делать это в настоящем решении совсем не обязательно, но все-таки рекомендуется - чтобы упростить дальнейшее решение задачи.

Как видите, составлять уравнение плоскости теперь намного проще. Подставляем точки в матрицу, считаем определитель - и все, уравнение готово.

На этом можно было бы закончить урок. Однако многие ученики постоянно забывают, что стоит внутри определителя. Например, в какой строчке стоит x 2 или x 3 , а в какой - просто x . Чтобы окончательно разобраться с этим, давайте проследим, откуда берется каждое число.

Откуда берется формула с определителем?

Итак, разбираемся, откуда возникает такое суровое уравнение с определителем. Это поможет вам запомнить его и успешно применять.

Все плоскости, которые встречаются в задаче C2, задаются тремя точками. Эти точки всегда отмечены на чертеже, либо даже указаны прямо в тексте задачи. В любом случае, для составления уравнения нам потребуется выписать их координаты:

M = (x 1 , y 1 , z 1);
N = (x 2 , y 2 , z 2);
K = (x 3 , y 3 , z 3).

Рассмотрим еще одну точку на нашей плоскости с произвольными координатами:

T = (x , y , z )

Берем любую точку из первой тройки (например, точку M ) и проведем из нее векторы в каждую из трех оставшихся точек. Получим три вектора:

MN = (x 2 − x 1 , y 2 − y 1 , z 2 − z 1);
MK = (x 3 − x 1 , y 3 − y 1 , z 3 − z 1);
MT = (x − x 1 , y − y 1 , z − z 1).

Теперь составим из этих векторов квадратную матрицу и приравняем ее определитель к нулю. Координаты векторов станут строчками матрицы - и мы получим тот самый определитель, который указан в теореме:

Эта формула означает, что объем параллелепипеда, построенного на векторах MN , MK и MT , равен нулю. Следовательно, все три вектора лежат в одной плоскости. В частности, и произвольная точка T = (x , y , z ) - как раз то, что мы искали.

Замена точек и строк определителя

У определителей есть несколько замечательных свойств, которые еще более упрощают решение задачи C2 . Например, нам неважно, из какой точки проводить векторы. Поэтому следующие определители дают такое же уравнение плоскости, как и приведенный выше:

Также можно менять местами строчки определителя. Уравнение при этом останется неизменным. Например, многие любят записывать строчку с координатами точки T = (x ; y ; z ) в самом верху. Пожалуйста, если вам так удобно:

Некоторых смущает, что в одной из строчек присутствуют переменные x , y и z , которые не исчезают при подстановке точек. Но они и не должны исчезать! Подставив числа в определитель, вы должны получить вот такую конструкцию:

Затем определитель раскрывается по схеме, приведенной в начале урока, и получается стандартное уравнение плоскости:

Ax + By + Cz + D = 0

Взгляните на пример. Он последний в сегодняшнем уроке. Я специально поменяю строчки местами, чтобы убедиться, что в ответе получится одно и то же уравнение плоскости.

Задача. Составьте уравнение плоскости, проходящей через точки:

B 1 = (1, 0, 1);
C = (1, 1, 0);
D 1 = (0, 1, 1).

Итак, рассматриваем 4 точки:

B 1 = (1, 0, 1);
C = (1, 1, 0);
D 1 = (0, 1, 1);
T = (x , y , z ).

Для начала составим стандартный определитель и приравниваем его к нулю:

Раскрываем определитель:

a = 0 · 1 · (z − 1) + 1 · 0 · (x − 1) + (−1) · (−1) · y = 0 + 0 + y;
b = (−1) · 1 · (x − 1) + 1 · (−1) · (z − 1) + 0 · 0 · y = 1 − x + 1 − z = 2 − x − z;
d = a − b = y − (2 − x − z ) = y − 2 + x + z = x + y + z − 2;
d = 0 ⇒ x + y + z − 2 = 0;

Все, мы получили ответ: x + y + z − 2 = 0 .

Теперь давайте переставим пару строк в определителе и посмотрим, что произойдет. Например, запишем строчку с переменными x , y , z не внизу, а вверху:

Вновь раскрываем полученный определитель:

a = (x − 1) · 1 · (−1) + (z − 1) · (−1) · 1 + y · 0 · 0 = 1 − x + 1 − z = 2 − x − z;
b = (z − 1) · 1 · 0 + y · (−1) · (−1) + (x − 1) · 1 · 0 = y;
d = a − b = 2 − x − z − y;
d = 0 ⇒ 2 − x − y − z = 0 ⇒ x + y + z − 2 = 0;

Мы получили точно такое же уравнение плоскости: x + y + z − 2 = 0. Значит, оно действительно не зависит от порядка строк. Осталось записать ответ.

Итак, мы убедились, что уравнение плоскости не зависит от последовательности строк. Можно провести аналогичные вычисления и доказать, что уравнение плоскости не зависит и от точки, координаты которой мы вычитаем из остальных точек.

В рассмотренной выше задаче мы использовали точку B 1 = (1, 0, 1), но вполне можно было взять C = (1, 1, 0) или D 1 = (0, 1, 1). В общем, любую точку с известными координатами, лежащую на искомой плоскости.

В предыдущем разделе, посвященном плоскости в пространстве, мы рассмотрели вопрос с позиции геометрии. Теперь же перейдем к описанию плоскости с помощью уравнений. Взгляд на плоскость со стороны алгебры предполагает рассмотрение основных видов уравнения плоскости в прямоугольной системе координат O х у z трехмерного пространства.

Yandex.RTB R-A-339285-1

Определение уравнения плоскости

Определение 1

Плоскость – это геометрическая фигура, состоящая из отдельных точек. Каждой точке в трехмерном пространстве соответствуют координаты, которые задаются тремя числами. Уравнение плоскости устанавливает зависимость между координатами всех точек.

Уравнение плоскости в прямоугольной системе координат 0хуz имеет вид уравнения с тремя переменными х, у и z . Удовлетворяют уравнению координаты любой точки, лежащей в пределах заданной плоскости, не удовлетворяют координаты любых других точек, которые лежат вне заданной плоскости.

Подстановка в уравнение плоскости координат точки данной плоскости, обращает уравнение в тождество. При подстановке координат точки, лежащей вне плоскости, уравнение превращается в неверное равенство.

Уравнение плоскости может иметь несколько видов. В зависимости от специфики решаемых задач уравнение плоскости может быть записано по-разному.

Общее уравнение плоскости

Сформулируем теорему, а затем запишем уравнение плоскости.

Теорема 1

Всякая плоскость в прямоугольной системе координат O x y z в трехмерном пространстве может быть задана уравнением вида A x + B y + C z + D = 0 , где А, В, С и D – некоторые действительные числа, которые одновременно не равны нулю. Всякое уравнение, имеющее вид A x + B y + C z + D = 0 , определяет плоскость в трехмерном пространстве

Уравнение, имеющее вид A x + B y + C z + D = 0 носит название общего уравнения плоскости. Если не придавать числам А, В, С и D конкретных значений, то мы получаем уравнение плоскости в общем виде.

Важно понимать, что уравнение λ · A x + λ · B y + λ · C z + λ · D = 0 , будет точно так же определять плоскость. В уравнении λ - это некоторое отличное от нуля действительное число. Это значит, что равенства A x + B y + C z + D = 0 и λ · A x + λ · B y + λ · C z + λ · D = 0 равнозначны.

Пример 1

Общим уравнениям плоскости x - 2 · y + 3 · z - 7 = 0 и - 2 · x + 4 · y - 2 3 · z + 14 = 0 удовлетворяют координаты одних и тех же точек, расположенных в трехмерном пространстве. Это значит, что они задают одну и ту же плоскость.

Дадим пояснения к рассмотренной выше теореме. Плоскость и ее уравнение неразделимы, так как каждому уравнению A x + B y + C z + D = 0 соответствует плоскость в заданной прямоугольной системе координат, а каждой плоскости, расположенной в трехмерном пространстве, соответствует ее уравнение вида A x + B y + C z + D = 0 .

Уравнение плоскости A x + B y + C z + D = 0 может быть полным и неполным. Все коэффициенты А, B , С и D в полном уравнении отличны от нуля. В противном случае, общее уравнение плоскости считается неполным.

Плоскости, которые задаются неполными уравнениями, могут быть параллельны координатным осям, проходить через оси координат, совпадать с координатными плоскостями или располагаться параллельно им, проходить через начало координат.

Пример 2

Рассмотрим положение в пространстве плоскости, заданной уравнением 4 · y - 5 · z + 1 = 0 .

Она параллельна оси абсцисс и располагается перпендикулярно по отношению к плоскости O y z . Уравнение z = 0 определяет координатную плоскость O y z , а общее уравнение плоскости вида 3 · x - y + 2 · z = 0 соответствует плоскости, которая проходит через начало координат.

Важное уточнение: коэффициенты А, В и С в общем уравнении плоскости представляют собой координаты нормального вектора плоскости.

Когда говорят об уравнении плоскости, то подразумевают общее уравнение плоскости. Все виды уравнений плоскости, которые мы разберем в следующем разделе статьи, получают из общего уравнения плоскости.

Нормальное уравнение плоскости

Нормальное уравнение плоскости – это общее уравнение плоскости вида A x + B y + C z + D = 0 , которое удовлетворяет следующим условиям: длина вектора n → = (A , B , C) равна единице, т.е. n → = A 2 + B 2 + C 2 = 1 , а D ≤ 0 .

Также запись нормального уравнения плоскости может иметь следующий вид cos α · x + cos β · y + cos γ · z - p = 0 , где p – это неотрицательное число, которое равно расстоянию от начала координат до плоскости, а cos α , cos β , cos γ - это направляющие косинусы нормального вектора данной плоскости единичной длины.

n → = (cos α , cos β , cos γ) , n → = cos 2 α + cos 2 β + cos 2 γ = 1

То есть, согласно нормальному уравнению плоскости, плоскость в прямоугольной системе координат O х у z удалена от начала координат на расстояние p в положительном направлении нормального вектора этой плоскости n → = (cos α , cos β , cos γ) . Если p равно нулю, то плоскость проходит через начало координат.

Пример 3

Плоскость задана общим уравнением плоскости вида - 1 4 · x - 3 4 · y + 6 4 · z - 7 = 0 . D = - 7 ≤ 0 , нормальный вектор этой плоскости n → = - 1 4 , - 3 4 , 6 4 имеет длину, равную единице, так как n → = - 1 4 2 + - 3 4 2 + 6 4 = 1 . Соответственно, это общее уравнение плоскости является нормальным уравнением плоскости.

Для более детального изучения нормального уравнения плоскости мы рекомендуем перейти в соответствующий раздел. В теме приведены разборы задач и характерные примеры, а также способы приведения общего уравнения плоскости к нормальному виду.

Плоскость отсекает на координатных осях O х, O у и O z отрезки определенной длины. Длины отрезков задаются отличными от нуля действительными числами a , b и с. Уравнение плоскости в отрезках имеет вид x a + y b + z c = 1 . Знак чисел а, b и с показывает, в каком направлении от нулевого значения следует откладывать отрезки на координатных осях.

Пример 4

Построим в прямоугольной системе координат плоскость, которая задана уравнением формулы плоскости в отрезках x - 5 + y - 4 + z 4 = 1 .

Точки удалены от начала координат в отрицательном направлении на 5 единиц по оси абсцисс, на 4 единицы в отрицательном направлении по оси ординат и на 4 единицы в положительном направлении по оси аппликат. Отмечаем точки и соединяем их прямыми линиями.

Плоскость полученного треугольника является плоскостью, соответствующей уравнению плоскости в отрезках, имеющего вид x - 5 + y - 4 + z 4 = 1 .

Более подробно информация об уравнении плоскости в отрезках, приведении уравнения плоскости в отрезках к общему уравнению плоскости размещена в отдельной статье. Там же приведен ряд решений задач и примеров по теме.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

1. Можно доказать утверждение, что если в пространстве задана прямоугольная система координат ОХУZ, то всякое уравнение первой степени с тремя неизвестными х,у,z необходимо и достаточно определяет относительно этой системы некоторую плоскость Р . Уравнение это называется общим уравнением плоскости и имеет следующий вид:

Ах + Ву + Сz + D= 0 (17)

(сравните с общим уравнением (15) прямой на плоскости, которое следует из этого при z = 0) и определяет плоскость Р , перпендикулярную вектору (А,В,С).

Вектор - нормальный вектор плоскости Р .

Уравнению (17) эквивалентны следующие уравнения.

2. Уравнение плоскости, проходящей через заданную точку М(х 0 , у 0 , z 0 ):

А(х - х 0) + В(у -у 0) + С(z -z 0) = 0.

3. Уравнение плоскости в отрезках

,

где ; ; .

4. Уравнение плоскости, проходящей через три заданные точки, не лежащие на одной прямой, записывается в виде определителя

,

где (х 1 , y 1 , z 1), (х 2 , y 2 , z 2), (х 3 , y 3 , z 3) - координаты заданных точек.

Угол между двумя плоскостями определяется как угол между их нормальными векторами n 1 и n 2 . Отсюда условие параллельности плоскостей

Р 1 и Р 2:

и условие перпендикулярности двух плоскостей:

А 1 А 2 + В 1 В 2 + С 1 С 2 = 0 .

Пример 29 . Через точку К (1, -3, 2) провести плоскость, параллельную векторам

а = (1, 2, -3) и b = (2,-1,-1) .

Решение. Пусть М (х , у , z ) – произвольная точка искомой плоскости. Вектор

КМ = (х - 1, у + 3, z - 2) лежит в этой плоскости, а векторы а и b ей параллельны. Следовательно, векторы КМ , а и b – компланарны. Тогда их смешанное произведение равно нулю:

.

Отсюда -(х –1) - (у + 3) – 5(z – 2) = 0 или х+ 7у + 5z + 10 = 0. Это и есть искомое уравнение плоскости.

Различные виды уравнения прямой в пространстве

Прямую линию в пространстве можно задавать в виде:

1) линии пересечения двух не совпадающих и не параллельных плоскостей Р 1 и Р 2:

;

2) уравнения прямой, проходящей через данную точку М (х 0 , у 0 , z 0) в направлении, задаваемом вектором L = (m, n, p ):

,

которое называется каноническим уравнением прямой в пространстве;

3) уравнения прямой, проходящей через две заданные точки М (х 1 , у 1 , z 1)

и M (x 2 , y 2 , z 2):

;

4) параметрических уравнений:

.

Пример 30 . Привести к каноническому и параметрическому видам уравнение прямой

.

Решение. Прямая задана как линия пересечения двух плоскостей. Нормальные векторы этих плоскостей n 1 = (3,1,-2) и n 2 = (4,-7,-1) перпендикулярны к искомой прямой, поэтому их векторное произведение [n 1 , n 2 ] = L параллельно ей и вектор [n 1 , n 2 ] (или любой ему коллинеарный) можно принять за направляющий вектор L искомой прямой.


[n 1 , n 2 ] =
.

Примем за L = 3i + j + 5k . Остается найти какую-либо точку на заданной прямой. Положим для этого, например, z = 0. Получим

.

Решив эту систему, находим х = 1, у = - 2. Таким образом, точка К (1, -2, 0) принадлежит заданной прямой, а её каноническое уравнение имеет вид

Уравнение плоскости, виды уравнения плоскости.

В разделе плоскость в пространстве мы рассмотрели плоскость с позиций геометрии. В этой статье мы взглянем на плоскость с позиций алгебры, то есть, перейдем к описанию плоскости с помощью уравнения плоскости.

Сначала разберемся с вопросом: «Что такое уравнение плоскости»? После этого рассмотрим основные виды уравнения плоскости в прямоугольной системе координат Oxyz трехмерного плостранства.

Навигация по странице.

  • Уравнение плоскости – определение.
  • Общее уравнение плоскости.
  • Уравнение плоскости в отрезках.
  • Нормальное уравнение плоскости.

Уравнение плоскости – определение.

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz и задана плоскость.

Плоскость, как и любая другая геометрическая фигура, состоит из точек. В прямоугольной системе координат Oxyz каждой точке соответствует упорядоченная тройка чисел – координаты точки. Между координатами каждой точки плоскости можно установить зависимость с помощью уравнения, которое называют уравнением плоскости.

Уравнение плоскости в прямоугольной системе координат Oxyz в трехмерном пространстве – это уравнение с тремя переменными x , y и z , которому удовлетворяют координаты любой точки заданной плоскости и не удовлетворяют координаты точек, лежащих вне данной плоскости.

Таким образом, уравнение плоскости обращается в тождество при подстановке в него координат любой точки плоскости. Если в уравнение плоскости подставить координаты точки, не лежащей в этой плоскости, то оно обратится в неверное равенство.

Осталось выяснить, какой вид имеет уравнение плоскости. Ответ на этот вопрос содержится в следующем пункте этой статьи. Забегая вперед, отметим, что уравнение плоскости может быть записано по-разному. Существование различных видов уравнения плоскости обусловлено спецификой решаемых задач.

К началу страницы

Общее уравнение плоскости.

Приведем формулировку теоремы, которая дает нам вид уравнения плоскости.

Теорема.

Всякое уравнение вида , где A , B , C и D – некоторые действительные числа, причем А , В и C одновременно не равны нулю, определяет плоскость в прямоугольной системе координат Oxyz в трехмерном пространстве, и всякая плоскость в прямоугольной системе координат Oxyz в трехмерном пространстве может быть задана уравнением вида .

Уравнение называется общим уравнением плоскости в пространстве. Если не придавать числам А , В , С и D конкретных значений, то общее уравнение плоскости называют уравнением плоскости в общем виде .

Следует заметить, что уравнение вида , где - некоторое действительное число, отличное от нуля, будет определять ту же самую плоскость, так как равенства и эквивалентны. К примеру, общие уравнения плоскости и задают одну и ту же плоскость, так как им удовлетворяют координаты одних и тех же точек трехмерного пространства.


Немного поясним смысл озвученной теоремы. В прямоугольной системе координат Oxyz каждой плоскости соответствует ее уравнение общего вида , а каждому уравнению соответствует плоскость в заданной прямоугольной системе координат трехмерного пространства. Другими словами, плоскость и ее общее уравнение неразделимы.

Если все коэффициенты А , В , С и D в общем уравнении плоскости отличны от нуля, то оно называется полным . В противном случае, общее уравнение плоскости называется неполным .

Неполными уравнениями задаются плоскости, параллельные координатным осям, проходящие через координатные оси, параллельные координатным плоскостям, перпендикулярные координатным плоскостям, совпадающие с координатными плоскостями, а также плоскости, проходящие через начало координат.

Например, плоскость параллельна оси абсцисс и перпендикулярна координатной плоскости Oyz , уравнение z = 0 определяет координатную плоскость Oxy , а общее уравнение плоскости вида соответствует плоскости, проходящей через начало координат.

Отметим также, что коэффициенты A , B и C в общем уравнении плоскости представляют собойкоординаты нормального вектора плоскости.

Все уравнения плоскости, которые разобраны в следующих пунктах могут быть получены из общего уравнения плоскости, а также приведены к общему уравнению плоскости. Таким образом, когда говорят об уравнении плоскости, то имеют в виду общее уравнение плоскости, если не оговорено иное.

К началу страницы



Рассказать друзьям