Контрольные вопросы и упражнения.

💖 Нравится? Поделись с друзьями ссылкой

Ошибки измерений классифицируют по следующим видам:

Абсолютные и относительные.

Положительные и отрицательные.

Постоянные и пропорциональные.

Грубые, случайные и систематические.

Абсолютная ошибка единичного результата измерения (А­ y ) определяется как разность следующих величин:

А­ y = y i - y ист. » y i -`y .

Относительная ошибка единичного результата измерения (В­ y ) рассчитывается как отношение следующих величин:

Из этой формулы следует, что величина относительной ошибки зависит не только от величины абсолютной ошибки, но и от значения измеряемой величины. При неизменности измеряемой величины (y ) относительную ошибку измерения можно уменьшить только за счет снижения величины абсолютной ошибки (А­ y ). При постоянстве абсолютной ошибки измерения для уменьшения относительной ошибки измерения можно использовать прием увеличения значения измеряемой величины.

Пример. Допустим, что в магазине торговые весы имеют постоянную абсолютную ошибку измерения массы: A m = 10 г. Если Вы взвесите на таких весах 100 г конфет (m 1), то относительная ошибка измерения массы конфет составит:

.

При взвешивании на этих же весах 500 г конфет (m 2) относительная ошибка будет в пять раз меньше:

.

Таким образом, если Вы будете пять раз взвешивать по 100 г конфет, то вы из-за ошибки измерения массы, из 500 г недополучите суммарно 50 г продукта. При однократном взвешивании большей массы (500 г) Вы потеряете только 10 г конфет, т.е. в пять раз меньше.

Учитывая вышесказанное, можно отметить, что в первую очередь необходимо стремиться к уменьшению относительных ошибок измерения. Абсолютные и относительные ошибки можно рассчитать только после определения среднего арифметического значения результата измерения.

Знак ошибки (положительный или отрицательный) определяется разницей между единичным и фактическим результатом измерения:

y i -`y > 0 (ошибка положительная );

y i -`y < 0 (ошибка отрицательная ).

Если абсолютная ошибка измерения не зависит от значения измеряемой величины, то такая ошибка называется постоянной . В противном случае ошибка будет пропорциональной . Характер ошибки измерения (постоянная или пропорциональная) определяется после проведения специальных исследований.

Грубая ошибка измерения (промах) - это значительно отличающийся от других результат измерения, который обычно возникает при нарушении методики измерения. Наличие грубых ошибок измерения в выборке устанавливается только методами математической статистики (при n>2). С методами обнаружения грубых ошибок познакомьтесь самостоятельно в .

Деление ошибок на случайные и систематические достаточно условно.


К случайным ошибкам относят ошибки, которые не имеют постоянной величины и знака. Такие ошибки возникают под действием следующих факторов: неизвестных исследователю; известных, но нерегулируемых; постоянно изменяющихся.

Случайные ошибки можно оценить только после проведения измерений.

Количественной оценкой модуля величины случайной ошибки измерения могут являться следующие параметры: и др.

Случайные ошибки измерения невозможно исключить, их можно только уменьшить. Один из основных способов уменьшения величины случайной ошибки измерения - это увеличение числа единичных измерений (увеличение величины n). Объясняется это тем, что величина случайных ошибок обратно пропорциональна величине n, например:

Систематические ошибки - это ошибки с неизменными величиной и знаком или изменяющиеся по известному закону. Эти ошибки вызываются постоянными факторами. Систематические ошибки можно количественно оценивать, уменьшать и даже исключать.

Систематические ошибки классифицируют на ошибки I, II и III типов.

К систематическим ошибкам I типа относят ошибки известного происхождения, которые могут быть до проведения измерения оценены путем расчета. Эти ошибки можно исключить, вводя их в результат измерения в виде поправок. Примером ошибки такого типа является ошибка при титрометрическом определении объемной концентрации раствора, если титрант был приготовлен при одной температуре, а измерение концентрации проводилось при другой. Зная зависимость плотности титранта от температуры, можно до проведения измерения рассчитать изменение объемной концентрации титранта, связанное с изменением его температуры, и эту разницу учесть в виде поправки в результате измерения.

Систематические ошибки II типа - это ошибки известного происхождения, которые можно оценить только в ходе эксперимента или в результате проведения специальных исследований. К этому типу ошибок относят инструментальные (приборные), реактивные, эталонные и др. ошибки. Познакомьтесь с особенностями таких ошибок самостоятельно в .

Любой прибор при его применении в процедуре измерения вносит в результат измерения свои приборные ошибки. При этом часть этих ошибок случайная, а другая часть - систематическая. Случайные ошибки приборов отдельно не оценивают, их оценивают в общей совокупности со всеми другими случайными ошибками измерения.

Каждый экземпляр любого прибора имеет свою персональную систематическую ошибку. Для того чтобы оценить эту ошибку, необходимо проводить специальные исследования.

Наиболее надежный способ оценки приборной систематической ошибки II типа - это сверка работы приборов по эталонам. Для мерной посуды (пипеток, бюреток, цилиндров и др.) проводят специальную процедуру - калибровку.

На практике наиболее часто требуется не оценить, а уменьшить или исключить систематическую ошибку II типа. Самыми распространенными методами уменьшения систематических ошибок являются методы релятивизации и рандомизации .Познакомьтесь с этими методами самостоятельно в .

К ошибкам III типа относят ошибки неизвестного происхождения. Эти ошибки можно обнаружить только после устранения всех систематических ошибок I и II типов.

К прочим ошибкам отнесем все другие виды ошибок, не рассмотренные выше (допустимые, возможные предельные ошибки и др.). Понятие возможных предельных ошибок применяется в случаях использования средств измерения и предполагает максимально возможную по величине инструментальную ошибку измерения (реальное же значение ошибки может быть меньше величины возможной предельной ошибки).

При использовании средств измерения можно рассчитать возможные предельные абсолютную (П`y ,пр.) или относительную (Е`y ,пр.) погрешности измерения. Так, например, возможная предельная абсолютная погрешность измерения находится как сумма возможных предельных случайных (x ` y , случ., пр.) и неисключенных систематических (d`y , пр.) ошибок:

П`y ,пр.= x ` y , случ., пр. + d`y , пр.

При выборках малого объема (n £ 20) неизвестной генеральной совокупности, подчиняющейся нормальному закону распределения, случайные возможные предельные ошибки измерений можно оценить следующим образом:

x ` y , случ., пр. = D`y = S `y ½t P, n ½,
где t P,n - квантиль распределения (критерий) Стьюдента для вероятности Р и выборки объемом n. Абсолютная возможная предельная погрешность измерения в этом случае будет равна:

П`y ,пр.= S ` y ½t P, n ½+ d ` y , пр.

Если результаты измерений не подчиняются нормальному закону распределения, то оценка погрешностей проводится по другим формулам.

Определение величины d ` y ,пр. зависит от наличия у средства измерения класса точности. Если средство измерения не имеет класса точности, то за величину d ` y ,пр. можно принять минимальную цену деления шкалы средства измерения . Для средства измерения с известным классом точности за величину d ` y ,пр.можно принять абсолютную допустимую систематическую ошибку средства измерения (d y , доп.):

d ` y ,пр.» .

Величина d y , доп. рассчитывается исходя из формул, приведенных в табл.5.

Для многих средств измерения класс точности указывается в виде чисел а×10 n , где а равно 1; 1,5; 2; 2,5; 4; 5; 6 и n равно 1; 0; -1; -2 и т.д., которые показывают величину возможной предельной допускаемой систематической ошибки (Е y , доп.) и специальных знаков, свидетельствующих о ее типе (относительная, приведенная, постоянная, пропорциональная).

Таблица 5

Примеры обозначения классов точности средств измерения

Погрешность измерения - оценка отклонения измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения.

Поскольку выяснить с абсолютной точностью истинное значение никакой величины невозможно, то невозможно и указать величину отклонения измеренного значения от истинного. (Это отклонение принято называть ошибкой измерения. В ряде источников, например, в Большой советской энциклопедии, термины ошибка измерения и погрешность измерения используются как синонимы, но согласно РМГ 29-99 термин ошибка измерения не рекомендуется применять как менее удачный). Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов. На практике вместо истинного значения используют действительное значение величины х д, то есть значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него. Такое значение, обычно, вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому в измерениях необходимо указывать, какова их точность. Для этого вместе с полученным результатом указывается погрешность измерений. Например, запись T=2,8±0,1 c. означает, что истинное значение величины T лежит в интервале от 2,7 с. до 2,9 с. с некоторой оговорённой вероятностью

В 2004 году на международном уровне был принят новый документ, диктующий условия проведения измерений и установивший новые правила сличения государственных эталонов. Понятие «погрешность» стало устаревать, вместо него было введено понятие «неопределённость измерений», однако ГОСТ Р 50.2.038-2004 допускает использовать термин погрешность для документов, использующихся в России.

Выделяют следующие виды погрешностей:

· абсолютная погрешность;

· относительна погрешность;

· приведенная погрешность;

· основная погрешность;

· дополнительная погрешность;

· систематическая погрешность;

· случайная погрешность;

· инструментальная погрешность;

· методическая погрешность;

· личная погрешность;

· статическая погрешность;

· динамическая погрешность.


Погрешности измерений классифицируются по следующим признакам.

· По способу математического выражения погрешности делятся на абсолютные погрешности и относительные погрешности.

· По взаимодействию изменений во времени и входной величины погрешности делятся на статические погрешности и динамические погрешности.

· По характеру появления погрешности делятся на систематические погрешности и случайные погрешности.



· По характеру зависимости погрешности от влияющих величин погрешности делятся на основные и дополнительные.

· По характеру зависимости погрешности от входной величины погрешности делятся на аддитивные и мультипликативные.

Абсолютная погрешность – это значение, вычисляемое как разность между значением величины, полученным в процессе измерений, и настоящим (действительным) значением данной величины. Абсолютная погрешность вычисляется по следующей формуле:

AQ n =Q n /Q 0 , где AQ n – абсолютная погрешность; Q n – значение некой величины, полученное в процессе измерения; Q 0 – значение той же самой величины, принятое за базу сравнения (настоящее значение).

Абсолютная погрешность меры – это значение, вычисляемое как разность между числом, являющимся номинальным значением меры, и настоящим (действительным) значением воспроизводимой мерой величины.

Относительная погрешность – это число, отражающее степень точности измерения. Относительная погрешность вычисляется по следующей формуле:

Где ∆Q – абсолютная погрешность; Q 0 – настоящее (действительное) значение измеряемой величины. Относительная погрешность выражается в процентах.

Приведенная погрешность – это значение, вычисляемое как отношение значения абсолютной погрешности к нормирующему значению.

Нормирующее значение определяется следующим образом:

· для средств измерений, для которых утверждено номинальное значение, это номинальное значение принимается за нормирующее значение;

· для средств измерений, у которых нулевое значение располагается на краю шкалы измерения или вне шкалы, нормирующее значение принимается равным конечному значению из диапазона измерений. Исключением являются средства измерений с существенно неравномерной шкалой измерения;

· для средств измерений, у которых нулевая отметка располагается внутри диапазона измерений, нормирующее значение принимается равным сумме конечных численных значений диапазона измерений;

· для средств измерения (измерительных приборов), у которых шкала неравномерна, нормирующее значение принимается равным целой длине шкалы измерения или длине той ее части, которая соответствует диапазону измерения. Абсолютная погрешность тогда выражается в единицах длины.

Погрешность измерения включает в себя инструментальную погрешность, методическую погрешность и погрешность отсчитывания. Причем погрешность отсчитывания возникает по причине неточности определения долей деления шкалы измерения.

Инструментальная погрешность – это погрешность, возникающая из-за допущенных в процессе изготовления функциональных частей средств измерения ошибок.

Методическая погрешность – это погрешность, возникающая по следующим причинам:

· неточность построения модели физического процесса, на котором базируется средство измерения;

· неверное применение средств измерений.

Субъективная погрешность – это погрешность возникающая из-за низкой степени квалификации оператора средства измерений, а также из-за погрешности зрительных органов человека, т. е. причиной возникновения субъективной погрешности является человеческий фактор.

Погрешности по взаимодействию изменений во времени и входной величины делятся на статические и динамические погрешности.

Статическая погрешность – это погрешность, которая возникает в процессе измерения постоянной (не изменяющейся во времени) величины.

Динамическая погрешность – это погрешность, численное значение которой вычисляется как разность между погрешностью, возникающей при измерении непостоянной (переменной во времени) величины, и статической погрешностью (погрешностью значения измеряемой величины в определенный момент времени).

По характеру зависимости погрешности от влияющих величин погрешности делятся на основные и дополнительные.

Основная погрешность – это погрешность, полученная в нормальных условиях эксплуатации средства измерений (при нормальных значениях влияющих величин).

Дополнительная погрешность – это погрешность, которая возникает в условиях несоответствия значений влияющих величин их нормальным значениям, или если влияющая величина переходит границы области нормальных значений.

Нормальные условия – это условия, в которых все значения влияющих величин являются нормальными либо не выходят за границы области нормальных значений.

Рабочие условия – это условия, в которых изменение влияющих величин имеет более широкий диапазон (значения влияющих не выходят за границы рабочей области значений).

Рабочая область значений влияющей величины – это область значений, в которой проводится нормирование значений дополнительной погрешности.

По характеру зависимости погрешности от входной величины погрешности делятся на аддитивные и мультипликативные.

Аддитивная погрешность – это погрешность, возникающая по причине суммирования численных значений и не зависящая от значения измеряемой величины, взятого по модулю (абсолютного).

Мультипликативная погрешность – это погрешность, изменяющаяся вместе с изменением значений величины, подвергающейся измерениям.

Надо заметить, что значение абсолютной аддитивной погрешности не связано со значением измеряемой величины и чувствительностью средства измерений. Абсолютные аддитивные погрешности неизменны на всем диапазоне измерений.

Значение абсолютной аддитивной погрешности определяет минимальное значение величины, которое может быть измерено средством измерений.

Значения мультипликативных погрешностей изменяются пропорционально изменениям значений измеряемой величины. Значения мультипликативных погрешностей также пропорциональны чувствительности средства измерений Мультипликативная погрешность возникает из-за воздействия влияющих величин на параметрические характеристики элементов прибора.

Погрешности, которые могут возникнуть в процессе измерений, классифицируют по характеру появления. Выделяют:

· систематические погрешности;

· случайные погрешности.

В процессе измерения могут также появиться грубые погрешности и промахи.

Систематическая погрешность – это составная часть всей погрешности результата измерения, не изменяющаяся или изменяющаяся закономерно при многократных измерениях одной и той же величины. Обычно систематическую погрешность пытаются исключить возможными способами (например, применением методов измерения, снижающих вероятность ее возникновения), если же систематическую погрешность невозможно исключить, то ее просчитывают до начала измерений и в результат измерения вносятся соответствующие поправки. В процессе нормирования систематической погрешности определяются границы ее допустимых значений. Систематическая погрешность определяет правильность измерений средств измерения (метрологическое свойство). Систематические погрешности в ряде случаев можно определить экспериментальным путем. Результат измерений тогда можно уточнить посредством введения поправки.

Способы исключения систематических погрешностей делятся на четыре вида:

· ликвидация причин и источников погрешностей до начала проведения измерений;

· устранение погрешностей в процессе уже начатого измерения способами замещения, компенсации погрешностей по знаку, противопоставлениям, симметричных наблюдений;

· корректировка результатов измерения посредством внесения поправки (устранение погрешности путем вычислений);

· определение пределов систематической погрешности в случае, если ее нельзя устранить.

Ликвидация причин и источников погрешностей до начала проведения измерений. Данный способ является самым оптимальным вариантом, так как его использование упрощает дальнейший ход измерений (нет необходимости исключать погрешности в процессе уже начатого измерения или вносить поправки в полученный результат).

Для устранения систематических погрешностей в процессе уже начатого измерения применяются различные способы

Способ введения поправок базируется на знании систематической погрешности и действующих закономерностей ее изменения. При использовании данного способа в результат измерения, полученный с систематическими погрешностями, вносят поправки, по величине равные этим погрешностям, но обратные по знаку.

Способ замещения состоит в том, что измеряемая величина заменяется мерой, помещенной в те же самые условия, в которых находился объект измерения. Способ замещения применяется при измерении следующих электрических параметров: сопротивления, емкости и индуктивности.

Способ компенсации погрешности по знаку состоит в том, что измерения выполняются два раза таким образом, чтобы погрешность, неизвестная по величине, включалась в результаты измерений с противоположным знаком.

Способ противопоставления похож на способ компенсации по знаку. Данный способ состоит в том, что измерения выполняют два раза таким образом, чтобы источник погрешности при первом измерении противоположным образом действовал на результат второго измерения.

Случайная погрешность – это составная часть погрешности результата измерения, изменяющаяся случайно, незакономерно при проведении повторных измерений одной и той же величины. Появление случайной погрешности нельзя предвидеть и предугадать. Случайную погрешность невозможно полностью устранить, она всегда в некоторой степени искажает конечные результаты измерений. Но можно сделать результат измерения более точным за счет проведения повторных измерений. Причиной случайной погрешности может стать, например, случайное изменение внешних факторов, воздействующих на процесс измерения. Случайная погрешность при проведении многократных измерений с достаточно большой степенью точности приводит к рассеянию результатов.

Промахи и грубые погрешности – это погрешности, намного превышающие предполагаемые в данных условиях проведения измерений систематические и случайные погрешности. Промахи и грубые погрешности могут появляться из-за грубых ошибок в процессе проведения измерения, технической неисправности средства измерения, неожиданного изменения внешних условий.

В физике и в других науках весьма часто приходится производить измерения различных величин (например, длины, массы, времени, температуры, электрического сопротивления и т. д.).

Измерение – процесс нахождения значения физической величины с помощью специальных технических средств – измерительных приборов.

Измерительным прибором называют устройство, с помощью которого осуществляется сравнение измеряемой величины с физической величиной того же рода, принятой за единицу измерения.

Различают прямые и косвенные методы измерений.

Прямые методы измерений – методы, при которых значения определяемых величин находятся непосредственным сравнением измеряемого объекта с единицей измерения (эталоном). Например, измеряемая линейкой длина какого-либо тела сравнивается с единицей длины – метром, измеряемая весами масса тела сравнивается с единицей массы – килограммом и т. д. Таким образом, в результате прямого измерения определяемая величина получается сразу, непосредственно.

Косвенные методы измерений – методы, при которых значения определяемых величин вычисляются по результатам прямых измерений других величин, с которыми они связаны известной функциональной зависимостью. Например, определение длины окружности по результатам измерения диаметра или определение объема тела по результатам измерения его линейных размеров.

Ввиду несовершенства измерительных приборов, наших органов чувств, влияния внешних воздействий на измерительную аппаратуру и объект измерения, а также прочих факторов все измерения можно производить только с известной степенью точности; поэтому результаты измерений дают не истинное значение измеряемой величины, а лишь приближенное. Если, например, вес тела определен с точностью до 0,1 мг, то это значит, что найденный вес отличается от истинного веса тела менее чем на 0,1 мг.

Точность измерений – характеристика качества измерений, отражающая близость результатов измерений к истинному значению измеряемой величины.

Чем меньше погрешности измерений, тем больше точность измерений. Точность измерений зависит от используемых при измерениях прибо- ров и от общих методов измерений. Совершенно бесполезно стремиться при измерениях в данных условиях перейти за этот предел точности. Можно свести к минимуму воздействие причин, уменьшающих точность измерений, но полностью избавиться от них невозможно, то есть при измерениях всегда совершаются более или менее значительные ошибки (погрешности). Для увеличения точности окончательного результата всякое физическое измерение необходимо делать не один, а несколько раз при одинаковых условиях опыта.

В результате i-го измерения (i – номер измерения) величины "Х”, получается приближенное число Х i , отличающееся от истинного значения Хист на некоторую величину ∆Х i = |Х i – Х|, которая является допущенной ошибкой или, другими словами, погрешностью. Истинная погрешность нам не известна, так как мы не знаем истинного значения измеряемой величины. Истинное значение измеряемой физической величины лежит в интервале

Х i – ∆Х < Х i – ∆Х < Х i + ∆Х

где Х i – значение величины Х, полученное при измерении (то есть измеренное значение); ∆Х – абсолютная погрешность определения величины Х.

Абсолютная ошибка (погрешность) измерения ∆Х – это абсолютная величина разности между истинным значением измеряемой величины Хист и результатом измерения X i: ∆Х = |Х ист – X i |.

Относительная ошибка (погрешность) измерения δ (характеризующая точность измерения) численно равна отношению абсолютной погрешности измерения ∆Х к истинному значению измеряемой величины Х ист (часто выражается в процентах): δ = (∆Х / Х ист) 100% .

Погрешности или ошибки измерений можно разделить на три класса: систематические, случайные и грубые (промахи).

Систематической называют такую погрешность, которая остается постоянной или закономерно (согласно некоторой функциональной зависимости) изменяется при повторных измерениях одной и той же величины. Такие погрешности возникают в результате конструктивных особенностей измерительных приборов, недостатков принятого метода измерений, каких-либо упущений экспериментатора, влияния внешних условий или дефекта самого объекта измерения.

В любом измерительном приборе заложена та или иная систематическая погрешность, которую невозможно устранить, но порядок которой можно учесть. Систематические погрешности либо увеличивают, либо уменьшают результаты измерения, то есть эти погрешности характеризуются постоянным знаком. Например, если при взвешивании одна из гирь имеет массу на 0,01 г большую, чем указано на ней, то найденное значение массы тела будет завышенным на эту величину, сколько бы измерений ни производилось. Иногда систематические ошибки можно учесть или устранить, иногда этого сделать нельзя. Например, к неустранимым ошибкам относятся ошибки приборов, о которых мы можем лишь сказать, что они не превышают определенной величины.

Случайными ошибками называют ошибки, которые непредсказуемым образом изменяют свою величину и знак от опыта к опыту. Появление случайных ошибок обусловлено действием многих разнообразных и неконтролируемых причин.

Например, при взвешивании весами этими причинами могут быть колебания воздуха, осевшие пылинки, разное трение в левом и правом подвесе чашек и др. Случайные ошибки проявляются в том, что, произведя измерения одной и той же величины Х в одинаковых условиях опыта, мы получаем несколько различающихся значений: Х1, Х2, Х3,…, Х i ,…, Х n , где Х i – результат i-го измерения. Установить какую-либо закономерность между результатами не удается, поэтому результат i - го измерения Х считается случайной величиной. Случайные ошибки могут оказать определенное влияние на отдельное измерение, но при многократных измерениях они подчиняются статистическим законам и их влияние на результаты измерений можно учесть или значительно уменьшить.

Промахи и грубые погрешности – чрезмерно большие ошибки, явно искажающие результат измерения. Этот класс погрешностей вызван чаще всего неправильными действиями экспериментатора (например, из-за невнимательности вместо показания прибора «212» записывается совершенно другое число – «221»). Измерения, содержащие промахи и грубые погрешности, следует отбрасывать.

Измерения могут быть проведены с точки зрения их точности техническим и лабораторным методами.

При использовании технических методов измерение проводится один раз. В этом случае удовлетворяются такой точностью, при которой погрешность не превышает некоторого определенного, заранее заданного значения, определяемого погрешностью примененной измерительной аппаратурой.

При лабораторных методах измерений требуется более точно указать значение измеряемой величины, чем это допускает ее однократное измерение техническим методом. В этом случае делают несколько измерений и вычисляют среднее арифметическое полученных значений, которое принимают за наиболее достоверное (истинное) значение измеряемой величины. Затем производят оценку точности результата измерений (учет случайных погрешностей).

Из возможности проведения измерений двумя методами вытекает и существование двух методов оценки точности измерений: технического и лабораторного.

Измерением какой-либо величины называется операция, в результате которой мы узнаем, во сколько раз измеряемая величина больше (или меньше) соответствующей величины, принятой за эталон (единицу измерения). Все измерения можно разбить на два типа: прямые и косвенные.

ПРЯМЫЕ – это такие измерения, при которых измеряется непосредственно интересующая нас физическая величина (масса, длина, интервалы времени, изменение температуры и т.д.).

КОСВЕННЫЕ – это такие измерения, при которых интересующая нас величина определяется (вычисляется) из результатов прямых измерений других величин, связанных с ней определенной функциональной зависимостью. Например, определение скорости равномерного движения по измерениям пройденного пути промежутка времени, измерение плотности тела по измерениям массы и объема тела и т.д.

Общая черта измерений – невозможность получения истинного значения измеряемой величины, результат измерения всегда содержит какую-то ошибку (погрешность). Объясняется это как принципиально ограниченной точностью измерения, так и природой самих измеряемых объектов. Поэтому, чтобы указать, насколько полученный результат близок к истинному значению, вместе с полученным результатом указывают ошибку измерения.

Например, мы измерили фокусное расстояние линзы f и написали, что

f = (256 ± 2) мм (1)

Это означает, что фокусное расстояние лежит в пределах от 254 до 258 мм . Но на самом деле это равенство (1) имеет вероятностный смысл. Мы не можем с полной уверенностью сказать, что величина лежит в указанных пределах, имеется лишь некоторая вероятность этого, поэтому равенство (1) нужно дополнить еще указанием вероятности, с которой это соотношение имеет смысл (ниже мы сформулируем это утверждение точнее).

Оценка ошибок необходима, т.к., не зная, каковы они, нельзя сделать определенных выводов из эксперимента.

Обычно рассчитывают абсолютную и относительную ошибку. Абсолютной ошибкой Δx называется разность между истинным значением измеряемой величины μ и результатом измерения x, т.е. Δx = μ - x

Отношение абсолютной ошибки к истинному значению измеряемой величины ε = (μ - x)/μ и называется относительной ошибкой.

Абсолютная ошибка характеризует погрешность метода, который был выбран для измерения.

Относительная ошибка характеризует качество измерений. Точностью измерения называют величину, обратную относительной ошибке, т.е. 1/ε.

§ 2. Классификация ошибок

Все ошибки измерения делятся на три класса: промахи (грубые ошибки), систематические и случайные ошибки.

ПРОМАХ вызван резким нарушением условий измерения при отдельных наблюдениях. Это ошибка, связанная с толчком или поломкой прибора, грубым просчетом экспериментатора, непредвиденным вмешательством и т.д. грубая ошибка появляется обычно не более чем в одном–двух измерениях и резко отличается по величине от прочих ошибок. Наличие промаха может сильно исказить результат, содержащий промах. Проще всего, установив причину промаха, устранить его в процессе измерения. Если в процессе измерения промах не был исключен, то это следует сделать при обработке результатов измерений, использовав специальные критерии, позволяющие объективно выделить в каждой серии наблюдений грубую ошибку, если она имеется.

СИСТЕМАТИЧЕСКОЙ ОШИБКОЙ называют составляющую погрешности измерений, остающуюся постоянной и закономерно изменяющуюся при повторных измерениях одной и той же величины. Систематические ошибки возникают, если не учитывать, например, теплового расширения при измерениях объема жидкости или газа, производимых при медленно меняющейся температуре; если при измерении массы не принять во внимание действие выталкивающей силы воздуха на взвешиваемое тело и на разновесы и т.д.

Систематические ошибки наблюдаются, если шкала линейки нанесена неточно (неравномерно); капилляр термометра в разных участках имеет разное сечение; при отсутствии электрического тока через амперметр стрелка прибора стоит не на нуле и т.д.

Как видно из примеров, систематическая ошибка вызывается определенными причинами, величина ее остается постоянной (смещение нуля шкалы прибора, неравноплечность весов), либо изменяется по определенному (иногда довольно сложному) закону (неравномерность шкалы, неравномерность сечения капилляра термометра и т.д.).

Можно сказать, что систематическая ошибка – это смягченное выражение, заменяющее слова «ошибка экспериментатора».

Такие ошибки возникают из-за того, что:

  1. неточны измерительные приборы;
  2. реальная установка в чем-то отличается от идеальной;
  3. не совсем верна теория явления, т.е. не учтены какие-то эффекты.

Как поступать в первом случае, мы знаем, – нужна калибровка или градуировка. В двух других случаях готового рецепта не существует. Чем лучше вы знаете физику, чем больше у вас опыта, тем больше вероятность, что вы обнаружите подобные эффекты, а значит, и устраните их. Общих правил, рецептов для выявления и устранения систематических ошибок нет, но некоторую классификацию можно провести. Выделим четыре типа систематических ошибок.

  1. Систематические ошибки, природа которых вам известна, а величина может быть найдена, следовательно, и исключена введением поправок. Пример. Взвешивание на неравноплечных весах. Пусть разность длин плеч – 0.001 мм . При длине коромысла 70 мм и массе взвешиваемого тела 200 г систематическая ошибка составит 2.86 мг . Систематическую ошибку этого измерения можно устранить, применяя специальные методы взвешивания (метод Гаусса, метод Менделеева и т.д.).
  2. Систематические ошибки, о которых известно, что величина их не превышает некоторого определенного значения. В этом случае при записи ответа может быть указано их максимальное значение. Пример. В паспорте, прилагаемом к микрометру, написано: «допустимая погрешность составляет ±0.004 мм . Температура +20 ± 4° C. Это означает, что, измеряя данным микрометром размеры какого-нибудь тела при указанных в паспорте температурах, мы будем иметь абсолютную погрешность, не превышающую ± 0.004 мм при любых результатах измерений.

    Часто максимальная абсолютная ошибка, даваемая данным прибором, указывается с помощью класса точности прибора, который изображается на шкале прибора соответствующим числом, чаще всего взятым в кружок.

    Число, обозначающее класс точности, показывает максимальную абсолютную ошибку прибора, выраженную в процентах от наибольшего значения измеряемой величины на верхнем пределе шкалы.

    Пусть в измерениях использован вольтметр, имеющий шкалу от 0 до 250 В , класс точности его – 1. Это значит, что максимальная абсолютная ошибка, которая может быть допущена при измерении этим вольтметром, будет не больше 1% от наибольшего значения напряжения, которое можно измерить на этой шкале прибора, иначе говоря:

    δ = ±0.01·250В = ±2.5В .

    Класс точности электроизмерительных приборов определяет максимальную погрешность, величина которой не меняется при переходе от начала к концу шкалы. Относительная ошибка при этом резко меняется, потому приборы обеспечивают хорошую точность при отклонении стрелки почти на всю шкалу и не дают ее при измерениях в начале шкалы. Отсюда следует рекомендация: выбрать прибор (или шкалу многопредельного прибора) так, чтобы стрелка прибора при измерениях заходила за середину шкалы.

    Если класс точности прибора не указан и нет паспортных данных, то в качестве максимальной ошибки прибора берется половина цены наименьшего деления шкалы прибора.

    Несколько слов о точности линеек. Металлические линейки очень точны: миллиметровые деления наносятся с погрешностью не более ±0.05 мм , а сантиметровые не хуже, чем с точностью 0.1 мм . Погрешность измерений, производимых с точностью таких линеек, практически равна погрешности отсчета на глаз (≤0.5 мм ). Деревянными и пластиковыми линейками лучше не пользоваться, их погрешности могут оказаться неожиданно большими.

    Исправный микрометр обеспечивает точность 0.01 мм , а погрешность измерений штангенциркулем определяется точностью, с которой может быть сделан отсчет, т.е. точностью нониуса (обычно 0.1 мм или 0.05 мм ).

  3. Систематические ошибки, обусловленные свойствами измеряемого объекта. Эти ошибки часто могут быть сведены к случайным. Пример. . Определяется электропроводность некоторого материала. Если для такого измерения взят отрезок проволоки, имеющей какой-то дефект (утолщение, трещину, неоднородность), то в определении электропроводности будет допущена ошибка. Повторение измерений дает такое же значение, т.е. допущена некоторая систематическая ошибка. Измерим сопротивление нескольких отрезков такой проволоки и найдем среднее значение электропроводности данного материала, которая может быть больше или меньше электропроводности отдельных измерений, следовательно, ошибки, допущенные в этих измерениях, можно отнести к так называемым случайным ошибкам.
  4. Систематические ошибки, о существовании которых ничего не известно. Пример. . Определяем плотность какого-либо металла. Вначале находим объем и массу образца. Внутри образца содержится пустота, о которой мы ничего не знаем. В определении плотности будет допущена ошибка, которая повторится при любом числе измерений. Приведенный пример прост, источник погрешности и ее величину можно определить без больших затруднений. Ошибки, такого типа можно выявить с помощью дополнительных исследований, путем проведения измерений совсем другим методом и в других условиях.

СЛУЧАЙНОЙ называют составляющую погрешности измерений, изменяющуюся случайным образом при повторных измерениях одной и той же величины.

При проведении с одинаковой тщательностью и в одинаковых условиях повторных измерений одной и той же постоянной неизменяющейся величины мы получаем результаты измерений – некоторые из них отличаются друг от друга, а некоторые совпадают. Такие расхождения в результатах измерений говорят о наличии в них случайных составляющих погрешности.

Случайная погрешность возникает при одновременном воздействии многих источников, каждый из которых сам по себе оказывает незаметное влияние на результат измерения, но суммарное воздействие всех источников может оказаться достаточно сильным.

Случайная ошибка может принимать различные по абсолютной величине значения, предсказать которые для данного акта измерения невозможно. Эта ошибка в равной степени может быть как положительной, так и отрицательной. Случайные ошибки всегда присутствуют в эксперименте. При отсутствии систематических ошибок они служат причиной разброса повторных измерений относительно истинного значения (рис.14 ).

Если, кроме того, имеется и систематическая ошибка, то результаты измерений будут разбросаны относительно не истинного, а смещенного значения (рис.15 ).

Рис. 14 Рис. 15

Допустим, что при помощи секундомера измеряют период колебаний маятника, причем измерение многократно повторяют. Погрешности пуска и остановки секундомера, ошибка в величине отсчета, небольшая неравномерность движения маятника – все это вызывает разброс результатов повторных измерений и поэтому может быть отнесено к категории случайных ошибок.

Если других ошибок нет, то одни результаты окажутся несколько завышенными, а другие несколько заниженными. Но если, помимо этого, часы еще и отстают, то все результаты будут занижены. Это уже систематическая ошибка.

Некоторые факторы могут вызвать одновременно и систематические и случайные ошибки. Так, включая и выключая секундомер, мы можем создать небольшой нерегулярный разброс моментов пуска и остановки часов относительно движения маятника и внести тем самым случайную ошибку. Но если к тому же мы каждый раз торопимся включить секундомер и несколько запаздываем выключить его, то это приведет к систематической ошибке.

Случайные погрешности вызываются ошибкой параллакса при отсчете делений шкалы прибора, сотрясении фундамента здания, влиянием незначительного движения воздуха и т.п.

Хотя исключить случайные погрешности отдельных измерений невозможно, математическая теория случайных явлений позволяем уменьшить влияние этих погрешностей на окончательный результат измерений. Ниже будет показано, что для этого необходимо произвести не одно, а несколько измерений, причем, чем меньшее значение погрешности мы хотим получить, тем больше измерений нужно провести.

Следует иметь в виду, что если случайная погрешность, полученная из данных измерений, окажется значительно меньше погрешности, определяемой точностью прибора, то, очевидно, что нет смысла пытаться еще уменьшить величину случайной погрешности – все равно результаты измерений не станут от этого точнее.

Наоборот, если случайная погрешность больше приборной (систематической), то измерение следует провести несколько раз, чтобы уменьшить значение погрешности для данной серии измерений и сделать эту погрешность меньше или одного порядка с погрешностью прибора.


Пусть некоторая случайная величина a измеряется n раз в одинаковых условиях. Результаты измерений дали набор n различных чисел

Абсолютная погрешность - величина размерная. Среди n значений абсолютных погрешностей обязательно встречаются как положительные, так и отрицательные.

За наиболее вероятное значение величины а обычно принимают среднее арифметическое значение результатов измерений

.

Чем больше число измерений, тем ближе среднее значение к истинному.

Абсолютной погрешностью i

.

Относительной погрешностью i -го измерения называется величина

Относительная погрешность - величина безразмерная. Обычноотносительная погрешность выражается в процентах, для этого e i домножают на 100%. Величина относительной погрешности характеризует точность измерения.

Средняя абсолютная погрешность определяется так:

.

Подчеркнем необходимость суммирования абсолютных значений (модулей) величин Dа i . В противном случае получится тождественный нулевой результат.

Средней относительной погрешностью называется величина

.

При большом числе измерений .

Относительную погрешность можно рассматривать как значение погрешности, приходящееся на единицу измеряемой величины.

О точности измерений судят на основании сравнения погрешностей результатов измерений. Поэтому погрешности измерений выражают в такой форме, чтобы для оценки точности достаточно было сопоставить только одни погрешности результатов, не сравнивая при этом размеры измеряемых объектов или зная эти размеры весьма приближенно. Из практики известно, что абсолютная погрешность измерения угла не зависит от значения угла, а абсолютная погрешность измерения длины зависит от значения длины. Чем больше значение длины, тем при данном методе и условиях измерения абсолютная погрешность будет больше. Следовательно, по абсолютной погрешности результата о точности измерения угла судить можно, а о точности измерения длины нельзя. Выражение погрешности в относительной форме позволяет сравнивать в известных случаях точность угловых и линейных измерений.


Основные понятия теории вероятности. Случайная погрешность.

Случайной погрешностью называют составляющую погрешности измерений, изменяющуюся случайным образом при повторных измерениях одной и той же величины.

При проведении с одинаковой тщательностью и в одинаковых условиях повторных измерений одной и той же постоянной неизменяющейся величины мы получаем результаты измерений – некоторые из них отличаются друг от друга, а некоторые совпадают. Такие расхождения в результатах измерений говорят о наличии в них случайных составляющих погрешности.

Случайная погрешность возникает при одновременном воздействии многих источников, каждый из которых сам по себе оказывает незаметное влияние на результат измерения, но суммарное воздействие всех источников может оказаться достаточно сильным.

Случайные ошибки являются неизбежным следствием любых измерений и обусловлены:

а) неточностью отсчетов по шкале приборов и инструментов;

б) не идентичностью условий повторных измерений;

в) беспорядочными изменениями внешних условий (температуры, давления, силового поля и т.д.), которые невозможно контролировать;

г) всеми другими воздействиями на измерения, причины которых нам неизвестны. Величину случайной погрешности можно свести к минимуму путем многократного повторения эксперимента и соответствующей математической обработки полученных результатов.

Случайная ошибка может принимать различные по абсолютной величине значения, предсказать которые для данного акта измерения невозможно. Эта ошибка в равной степени может быть как положительной, так и отрицательной. Случайные ошибки всегда присутствуют в эксперименте. При отсутствии систематических ошибок они служат причиной разброса повторных измерений относительно истинного значения.

Допустим, что при помощи секундомера измеряют период колебаний маятника, причем измерение многократно повторяют. Погрешности пуска и остановки секундомера, ошибка в величине отсчета, небольшая неравномерность движения маятника – все это вызывает разброс результатов повторных измерений и поэтому может быть отнесено к категории случайных ошибок.

Если других ошибок нет, то одни результаты окажутся несколько завышенными, а другие несколько заниженными. Но если, помимо этого, часы еще и отстают, то все результаты будут занижены. Это уже систематическая ошибка.

Некоторые факторы могут вызвать одновременно и систематические и случайные ошибки. Так, включая и выключая секундомер, мы можем создать небольшой нерегулярный разброс моментов пуска и остановки часов относительно движения маятника и внести тем самым случайную ошибку. Но если к тому же мы каждый раз торопимся включить секундомер и несколько запаздываем выключить его, то это приведет к систематической ошибке.

Случайные погрешности вызываются ошибкой параллакса при отсчете делений шкалы прибора, сотрясении фундамента здания, влиянием незначительного движения воздуха и т.п.

Хотя исключить случайные погрешности отдельных измерений невозможно, математическая теория случайных явлений позволяем уменьшить влияние этих погрешностей на окончательный результат измерений. Ниже будет показано, что для этого необходимо произвести не одно, а несколько измерений, причем, чем меньшее значение погрешности мы хотим получить, тем больше измерений нужно провести.

В связи с тем, что возникновение случайных погрешностей неизбежно и неустранимо, основной задачей всякого процесса измерения является доведение погрешностей до минимума.

В основе теории погрешностей лежат два основных предположения, подтверждаемых опытом:

1. При большом числе измерений случайные погрешности одинаковой величины, но разного знака, т.е погрешности в сторону увеличения и уменьшения результата встречаются достаточно часто.

2. Большие по абсолютной величине погрешности встречаются реже, чем малые, таким образом, вероятность возникновения погрешности уменьшается с ростом ее величины.

Поведение случайных величин описывают статистические закономерности, которые являются предметом теории вероятностей. Статистическим определением вероятности w i события i является отношение

где n - общее число опытов, n i - число опытов, в которых событие i произошло. При этом общее число опытов должно быть очень велико (n ®¥). При большом числе измерений случайные ошибки подчиняются нормальному распределению (распределение Гаусса), основными признаками которого являются следующие:

1. Чем больше отклонение значения измеренной величины от истинного, тем меньше вероятность такого результата.

2. Отклонения в обе стороны от истинного значения равновероятны.

Из приведенных выше допущений вытекает, что для уменьшения влияния случайных ошибок необходимо произвести измерение данной величины несколько раз. Предположим, что мы измеряем некоторую величину x. Пусть произведено n измерений: x 1 , x 2 , ... x n - одним и тем же методом и с одинаковой тщательностью. Можно ожидать, что число dn полученных результатов, которые лежат в некотором достаточно узком интервале от x до x + dx , должно быть пропорционально:

Величине взятого интервала dx ;

Общему числу измерений n .

Вероятность dw (x ) того, что некоторое значение x лежит в интервале от x до x + dx, определяется следующим образом:

(при числе измерений n ®¥).

Функция f (х ) называется функцией распределения или плотностью вероятности.

В качестве постулата теории ошибок принимается, что результаты прямых измерений и их случайные погрешности при большом их количестве подчиняются закону нормального распределения.

Найденная Гауссом функция распределения непрерывной случайной величины x имеет следующий вид:

, где mиs - параметры распределения.

Параметрmнормального распределения равен среднему значению áx ñ случайной величины, которое при произвольной известной функции распределения определяется интегралом

.

Таким образом, величина m является наиболее вероятным значением измеряемой величины x, т.е. ее наилучшей оценкой.

Параметр s 2 нормального распределения равен дисперсии D случайной величины, которая в общем случае определяется следующим интегралом

.

Квадратный корень из дисперсии называется средним квадратическим отклонением случайной величины .

Среднее отклонение (погрешность) случайной величины ásñ определяется с помощью функции распределения следующим образом

Средняя погрешность измерений ásñ, вычисленная по функции распределения Гаусса, соотносится с величиной среднего квадратического отклонения s следующим образом:

< s> = 0,8s .

Параметры s и m связаны между собой следующим образом:

.

Это выражение позволяет находить среднее квадратическое отклонение s , если имеется кривая нормального распределения.

График функции Гаусса представлен на рисунках. Функция f (x ) симметрична относительно ординаты, проведенной в точке x = m; проходит через максимум в точке x = m и имеет перегиб в точках m ±s. Таким образом, дисперсия характеризует ширину функции распределения, или показывает, насколько широко разбросаны значения случайной величины относительно ее истинного значения. Чем точнее измерения, тем ближе к истинному значению результаты отдельных измерений, т.е. величина s - меньше. На рисунке A изображена функция f (x ) для трех значений s.

Площадь фигуры, ограниченной кривой f (x ) и вертикальными прямыми, проведенными из точек x 1 и x 2 (рис.Б), численно равна вероятности попадания результата измерения в интервал Dx = x 1 - x 2 , которая называется доверительной вероятностью. Площадь под всей кривой f (x ) равна вероятности попадания случайной величины в интервал от 0 до ¥, т.е.

,

так как вероятность достоверного события равна единице.

Используя нормальное распределение, теория ошибок ставит и решает две основные задачи. Первая - оценка точности проведенных измерений. Вторая - оценка точности среднего арифметического значения результатов измерений.5. Доверительный интервал. Коэффициент Стъюдента.

Теория вероятностей позволяет определить величину интервала, в котором с известной вероятностью w находятся результаты отдельных измерений. Эта вероятность называется доверительной вероятностью , а соответствующий интервал (<x > ± Dx ) w называется доверительным интервалом. Доверительная вероятность также равна относительной доле результатов, оказавшихся внутри доверительного интервала.

Если число измерений n достаточно велико, то доверительная вероятность выражает долю из общего числа n тех измерений, в которых измеренная величина оказалась в пределах доверительного интервала. Каждой доверительной вероятности w соответствует свой доверительный интервал.w 2 80%. Чем шире доверительный интервал, тем больше вероятность получить результат внутри этого интервала. В теории вероятностей устанавливается количественная связь между величиной доверительного интервала, доверительной вероятностью и числом измерений.

Если в качестве доверительного интервала выбрать интервал, соответствующий средней погрешности, то есть Da = áDа ñ, то при достаточно большом числе измеренийон соответствует доверительной вероятности w 60%. При уменьшении числа измерений доверительная вероятность, соответствующая такому доверительному интервалу (áа ñ ± áDа ñ), уменьшается.

Таким образом, для оценки доверительного интервала случайной величины можно пользоваться величиной средней погрешностиáDа ñ.

Для характеристики величины случайной погрешности необходимо задать два числа, а именно, величину доверительного интервала и величину доверительной вероятности. Указание одной только величины погрешности без соответствующей ей доверительной вероятности в значительной мере лишено смысла.

Если известна средняя погрешность измерения ásñ, доверительный интервал, записанный в виде (<x > ± ásñ) w , определен с доверительной вероятностью w = 0,57.

Если известно среднее квадратическое отклонение s распределения результатов измерений, указанный интервал имеет вид (<x t w s) w , где t w - коэффициент, зависящий от величины доверительной вероятности и рассчитывающийся по распределению Гаусса.

Наиболее часто используемые величиныDx приведены в таблице 1.



Рассказать друзьям