Марковские процессы примеры. Основные понятия марковских процессов

💖 Нравится? Поделись с друзьями ссылкой

Структура и классификация систем массового обслуживания

Системы массового обслуживания

Нередко возникает необходимость в решении вероятностных задач, связанных с системами массового обслуживания (СМО), примерами которых могут быть:

Билетные кассы;

Ремонтные мастерские;

Торговые, транспортные, энергетические системы;

Системы связи;

Общность таких систем выявляется в единстве математических методов и моделей, применяемых при исследовании их деятельности.

Рис. 4.1. Основные сферы применения ТМО

На вход в СМО поступает поток требований на обслуживание. Например, клиенты или пациенты, поломки в оборудовании, телефонные вызовы. Требования поступают нерегулярно, в случайные моменты времени. Случайный характер носит и продолжительность обслуживания. Это создает нерегулярность в работе СМО, служит причиной ее перегрузок и недогрузок.

Системы массового обслуживания обладают различной структурой, но обычно в них можно выделить четыре основных элемента :

1. Входящий поток требований.

2. Накопитель (очередь).

3. Приборы (каналы обслуживания).

4. Выходящий поток.

Рис. 4.2. Общая схема систем массового обслуживания

Рис. 4.3. Модель работы системы

(стрелками показаны моменты поступления требований в

систему, прямоугольниками – время обслуживания)

На рис.4.3 а представлена модель работы системы с регулярным потоком требований. Поскольку известен промежуток между поступлениями требований, то время обслуживания выбрано так, чтобы полностью загрузить систему. Для системы со стохастическим потоком требований ситуация совершенно иная – требования приходят в различные моменты времени и время обслуживания тоже является случайной величиной, которое может быть описано неким законом распределения (рис.4.3 б).

В зависимости от правил образования очереди различают следующие СМО:

1) системы с отказами , в которых при занятости всех каналов обслуживания заявка покидает систему необслуженной;

2) системы с неограниченной очередью , в которых заявка встает в очередь, если в момент ее поступления все каналы обслуживания были заняты;

3) системы с ожиданием и ограниченной очередью , в которых время ожидания ограниченно какими-либо условиями или существуют ограничения на число заявок, стоящих в очереди.

Рассмотрим характеристики входящего потока требований.

Поток требований называется стационарным , если вероятность попадания того или иного числа событий на участок времени определенной длины зависит только от длины этого участка.

Поток событий называется потоком без последствий , если число событий, попадающих на некоторый участок времени, не зависит от числа событий, попадающих на другие.



Поток событий называется ординарным , если невозможно одновременное поступление двух или более событий.

Поток требований называется пуассоновским (или простейшим), если он обладает тремя свойствами: стационарен, ординарен и не имеет последствий. Название связано с тем, что при выполнении указанных условий число событий, попадающих на любой фиксированный интервал времени, будет распределен по закону Пуассона.

Интенсивностью потока заявок λ называется среднее число заявок, поступающих из потока за единицу времени.

Для стационарного потока интенсивность постоянна. Если τ – среднее значение интервала времени между двумя соседними заявками, то В случае пуассоновского потока вероятность поступления на обслуживание m заявок за промежуток времени t определяется по закону Пуассона:

Время между соседними заявками распределено по экспоненциальному закону с плотностью вероятности

Время обслуживания является случайной величиной и подчиняется показательному закону распределения с плотностью вероятности где μ – интенсивность потока обслуживания, т.е. среднее число заявок, обслуживаемых в единицу времени,

Отношение интенсивности входящего потока к интенсивности потока обслуживания называется загрузкой системы

Система массового обслуживания представляет собой систему дискретного типа с конечным или счетным множеством состояний, а переход системы из одного состояния в другое происходит скачком, когда осуществляется какое-нибудь событие.

Процесс называется процессом с дискретными состояниями , если его возможные состояния можно заранее перенумеровать, и переход системы из состояния в состояние происходит практически мгновенно.

Такие процессы бывают двух типов: с дискретным или непрерывным временем.

В случае дискретного времени переходы из состояния в состояние могут происходить в строго определенные моменты времени. Процессы с непрерывным временем отличаются тем, что переход системы в новое состояние возможен в любой момент времени.

Случайным процессом называется соответствие, при котором каждому значению аргумента (в данном случае – моменту из промежутка времени проводимого опыта) ставится в соответствие случайная величина (в данном случае – состояние СМО). Случайной величиной называется величина, которая в результате опыта может принять одно, но неизвестное заранее, какое именно, числовое значение из данного числового множества.

Поэтому для решения задач теории массового обслуживания необходимо этот случайный процесс изучить, т.е. построить и проанализировать его математическую модель.

Случайный процесс называется марковским , если для любого момента времени вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент и не зависят от того, когда и как система пришла в это состояние.

Переходы системы из состояния в состояние происходит под действием каких-то потоков (поток заявок, поток отказов). Если все потоки событий, приводящие систему в новое состояние, – простейшие пуассоновские, то процесс, протекающий в системе, будет марковским, так как простейший поток не обладает последствием: в нем будущее не зависит от прошлого.

Для математического описания многих операций, развивающихся в форме случайного процесса, может быть с успехом применен математический аппарат, разработанный в теории вероятностей для Марковских случайных процессов.

Функция X(t) называется случайной, если ее значение при любом аргументе t является случайной величиной.

Случайная функция X(t) , аргументом которой является время, называетсяслучайным процессом .

Марковские процессы являются частным видом случайных процессов. Особое место марковских процессов среди других классов случайных процессов обусловлено следующими обстоятельствами: для марковских процессов хорошо разработан математический аппарат, позволяющий решать многие практические задачи; с помощью марковских процессов можно описать (точно или приближенно) поведение достаточно сложных систем.

Определение. Случайный процесс, протекающий в какой-либо системе S , называется марковским (или процессом без последействия), если он обладает следующим свойством: для любою момента времени t 0 вероятность любого состояния системы в будущем (при t > t 0 ) зависит только от ее состояния в настоящем (при t = t 0 ) и не зависит от того, когда и каким образом система S пришла в это состояние. То есть в марковском случайном процессе будущее развитие процесса не зависит от его предыстории.

Классификация марковских процессов. Классификация марковских случайных процессов производится в зависимости от непрерывности или дискретности множества значений функции X(t) и параметра t . Различают следующие основные виды марковских случайных процессов:

· с дискретными состояниями и дискретным временем (цепь Маркова);

· с непрерывными состояниями и дискретным временем (марковские последовательности);

· с дискретными состояниями и непрерывным временем (непрерывная цепь Маркова);

· с непрерывным состоянием и непрерывным временем.

Здесь будут рассматриваться только марковские процессы с дискретными состояниями S 1 , S 2 ,…, S n . То есть эти состояния можно перенумеровать одно за другим, а сам процесс состоит в том, что система случайным образом скачком меняет свое состояние.

Граф состояний. Марковские процессы с дискретными состояниями удобно иллюстрировать с помощью так называемого графа состояний (рис. 1.1.), где квадратиками обозначены состояния S 1 , S 2 , ... системы S , а стрелками - возможные переходы из состояния в состояние. На графе отмечаются только непосредственные переходы, а не переходы через другие состояния. Возможные задержки в прежнем состоянии изображают «петлей», т. е. стрелкой, направленной из данного состояния в него же. Число состояний системы может быть как конечным, так и бесконечным (но счетным).


Рис. 3.1. Граф состояний системы S

Задача 1. Система S – автомобиль, которая может находиться в одном из пяти состояний.

S 1 – исправна, работает;

S 2 – неисправна, ожидает осмотра;

S 3 –осматривается;

S 4 – ремонтируется;

S 5 – списана.

Построить граф состояний системы.

Задача 2. Техническое устройство S состоит из 2-х узлов: 1 и 2, каждый из которых может в любой момент времени отказать. У каждого узла может быть только 2 состояния. 1 – исправен, 2 – неисправен. Построить граф состояний системы.

Задача 3. Построить граф состояний в условиях предыдущей задачи, предполагая, что ремонт узлов в ходе процесса не производится.

Задача 4. Техническое устройство S состоит из 2-х узлов: 1 и 2, каждый из которых может в любой момент времени отказать. Каждый узел, перед тем как начать восстанавливаться подвергается осмотру с целью локализации неисправности. Состояния системы нумеруются 2-мя индексами: S ij (i – состояния первого узла, j – состояния второго узла). У каждого узла три состояния (работает, осматривается, восстанавливается).

Марковские процессы были выведены учеными в 1907 году. Ведущие математики того времени развивали эту теорию, некоторые совершенствуют ее до сих пор. Эта система распространяется и в других научных областях. Практические цепи Маркова применяются в различных сферах, где человеку необходимо прибывать в состоянии ожидания. Но, чтобы четко понимать систему, нужно владеть знаниями о терминах и положениях. Главным фактором, который определяет Марковский процесс, считаются случайности. Правда, он не схож с понятием неопределенности. Для него присущи определенные условия и переменные.

Особенности фактора случайности

Это условие подчиняется статической устойчивости, точнее, ее закономерностям, которые не учитываются при неопределенности. В свою очередь, данный критерий позволяет использовать математические методы в теории Марковских процессов, как отмечал ученый, изучавший динамику вероятностей. Созданная им работа касалась непосредственно этих переменных. В свою очередь, изученный и развившийся случайный процесс, имеющий понятия состояния и перехода, а также применяемый в стохастических и математических задачах, при этом дает возможность этим моделям функционировать. Кроме всего прочего, он дает возможность совершенствоваться другим важным прикладным теоретическим и практическим наукам:

  • диффузионная теория;
  • теория массового обслуживания;
  • теория надежности и прочего;
  • химия;
  • физика;
  • механика.

Сущностные особенности не запланированного фактора

Этот Марковский процесс обусловлен случайной функцией, то есть любое значение аргумента считается данной величиной или той, что принимает заранее заготовленный вид. Примерами служат:

  • колебания в цепи;
  • скорость движения;
  • шероховатость поверхности на заданном участке.

Также принято считать, что фактом случайной функции выступает время, то есть происходит индексация. Классификация имеет вид состояния и аргумент. Этот процесс может быть с дискретными, а также непрерывными состояниями или временем. Причем случаи разные: все происходит или в одном, или в другом виде, или одновременно.

Детальный разбор понятия случайности

Построить математическую модель с необходимыми показателями эффективности в явно аналитическом виде было достаточно сложно. В дальнейшем реализовать данную задачу стало возможно, ведь возник Марковский случайный процесс. Разбирая детально это понятие, необходимо вывести некоторую теорему. Марковский процесс - это физическая система, изменившая свое положение и состояние, которые заранее не были запрограммированы. Таким образом, выходит, что в ней протекает случайный процесс. Например: космическая орбита и корабль, который выводится на нее. Результат достигнут лишь благодаря каким-то неточностям и корректировкам, без этого не реализуется заданный режим. Большинству происходящих процессов присущи случайность, неопределенность.

По существу вопроса, практически любой вариант, который можно рассмотреть, будет подвержен этому фактору. Самолет, техническое устройство, столовая, часы - все это подвержено случайным изменениям. Причем данная функция присуща любому происходящему процессу в реальном мире. Однако пока это не касается индивидуально настроенных параметров, происходящие возмущения воспринимаются как детерминированные.

Понятие Марковского случайного процесса

Проектировка какого-либо технического или механического прибора, устройства вынуждает создателя учитывать различные факторы, в частности неопределенности. Вычисление случайных колебаний и возмущений возникает в момент личной заинтересованности, например, при реализации автопилота. Некоторые процессы, изучаемые в науках вроде физики и механики, являются таковыми.

Но обращать на них внимание и проводить скрупулезные исследования следует начинать в тот момент, когда это непосредственно нужно. Марковский случайный процесс имеет следующее определение: характеристика вероятности будущего вида зависит от состояния, в котором он находится в данный момент времени, и не имеет отношения к тому, как выглядела система. Итак, данное понятие указывает на то, что результат можно предсказать, учитывая лишь вероятность и забыв про предысторию.

Подробное токование понятия

В настоящий момент система находится в определенном состоянии, она переходит и меняется, предсказать, что будет дальше, по сути, невозможно. Но, учитывая вероятность, можно сказать, что процесс будет завершен в определенном виде или сохранит предыдущий. То есть будущее возникает из настоящего, забывая о прошлом. Когда система или процесс переходит в новое состояние, то предысторию обычно опускают. Вероятность в Марковских процессах играет немаловажную роль.

Например, счетчик Гейгера показывает число частиц, которое зависит от определенного показателя, а не от того, в какой именно момент оно пришло. Здесь главным выступает вышеуказанный критерий. В практическом применении могут рассматриваться не только Марковские процессы, но и подобные им, к примеру: самолеты участвуют в бою системы, каждая из которых обозначена каким-либо цветом. В данном случае главным критерием вновь выступает вероятность. В какой момент произойдет перевес в числе, и для какого цвета, неизвестно. То есть этот фактор зависит от состояния системы, а не от последовательности гибели самолетов.

Структурный разбор процессов

Марковским процессом называется любое состояние системы без вероятностного последствия и без учета предыстории. То есть, если включить будущее в настоящее и опустить прошлое. Перенасыщение данного времени предысторией приведет к многомерности и выведет сложные построения цепей. Поэтому лучше эти системы изучать простыми схемами с минимальными числовыми параметрами. В результате эти переменные считаются определяющими и обусловленными какими-либо факторами.

Пример Марковских процессов: работающий технический прибор, который в этот момент исправен. В данном положении вещей интерес представляет вероятность того, что устройство будет функционировать еще длительный период времени. Но если воспринимать оборудование как отлаженное, то этот вариант уже не будет принадлежать к рассматриваемому процессу ввиду того, что нет сведений о том, сколько аппарат работал до этого и производился ли ремонт. Однако если дополнить эти две переменные времени и включить их в систему, то ее состояние можно отнести к Марковскому.

Описание дискретного состояния и непрерывности времени

Модели Марковских процессов применяются в тот момент, когда необходимо пренебречь предысторией. Для исследования в практике наиболее часто встречаются дискретные, непрерывные состояния. Примерами такой ситуации являются: в структуру оборудования входят узлы, которые в условиях рабочего времени могут выйти из строя, причем происходит это как незапланированное, случайное действие. В результате состояние системы подвергается ремонту одного или другого элемента, в этот момент какой-то из них будет исправен или они оба будут отлаживаться, или наоборот, являются полностью налаженными.

Дискретный Марковский процесс основан на теории вероятности, а также является переходом системы из одного состояния в другое. Причем данный фактор происходит мгновенно, даже если происходят случайные поломки и ремонтные работы. Чтобы провести анализ такого процесса, лучше использовать графы состояний, то есть геометрические схемы. Системные состояния в таком случае обозначены различными фигурами: треугольниками, прямоугольниками, точками, стрелками.

Моделирование данного процесса

Марковские процессы с дискретными состояниями - возможные видоизменения систем в результате перехода, осуществляющегося мгновенно, и которые можно пронумеровать. Для примера можно построить график состояния из стрелок для узлов, где каждая будет указывать путь различно направленных факторов выхода из строя, рабочего состояния и т. д. В дальнейшем могут возникать любые вопросы: вроде того, что не все геометрические элементы указывают верное направление, ведь в процессе способен испортиться каждый узел. При работе важно учитывать и замыкания.

Марковский процесс с непрерывным временем происходит тогда, когда данные заранее не фиксируются, они происходят случайно. Переходы ранее были не запланированы и происходят скачками, в любой момент. В данном случае вновь главную роль играет вероятность. Однако, если сложившаяся ситуация относится к указанной выше, то для описания потребуется разработать математическую модель, но важно разбираться в теории возможности.

Вероятностные теории

Данные теории рассматривают вероятностные, имеющие характерные признаки вроде случайного порядка, движения и факторов, математические задачи, а не детерминированные, которые являются определенными сейчас и потом. Управляемый Марковский процесс имеет фактор возможности и основан на нем. Причем данная система способна переходить в любое состояние мгновенно в различных условиях и временном промежутке.

Чтобы применять эту теорию на практике, необходимо владеть важными знаниями вероятности и ее применения. В большинстве случаев каждый пребывает в состоянии ожидания, которое в общем смысле и есть рассматриваемая теория.

Примеры теории вероятности

Примерами Марковских процессов в данной ситуации могут выступать:

  • кафе;
  • билетные кассы;
  • ремонтных цеха;
  • станции различного назначения и пр.

Как правило, люди ежедневно сталкиваются с этой системой, сегодня она носит название массового обслуживания. На объектах, где присутствует подобная услуга, есть возможность требования различных запросов, которые в процессе удовлетворяются.

Скрытые модели процесса

Такие модели являются статическими и копируют работу оригинального процесса. В данном случае основной особенностью является функция наблюдения за неизвестными параметрами, которые должны быть разгаданы. В результате эти элементы могут использоваться в анализе, практике или для распознавания различных объектов. Обычные Марковские процессы основаны на видимых переходах и на вероятности, в скрытой модели наблюдаются только неизвестные переменные, на которые оказывает влияние состояние.

Сущностное раскрытие скрытых Марковских моделей

Также она имеет распределение вероятности среди других значений, в результате исследователь увидит последовательность символов и состояний. Каждое действие имеет распределение по вероятности среди других значений, ввиду этого скрытая модель дает информацию о сгенерированных последовательных состояниях. Первые заметки и упоминания о них появились в конце шестидесятых годов прошлого столетия.

Затем их стали применять для распознавания речи и в качестве анализаторов биологических данных. Кроме того, скрытые модели распространились в письме, движениях, информатике. Также эти элементы имитируют работу основного процесса и пребывают в статике, однако, несмотря на это, отличительных особенностей значительно больше. В особенности данный факт касается непосредственного наблюдения и генерирования последовательности.

Стационарный Марковский процесс

Данное условие существует при однородной переходной функции, а также при стационарном распределении, считающимся основным и, по определению, случайным действием. Фазовым пространством для данного процесса является конечное множество, но при таком положении вещей начальная дифференциация существует всегда. Переходные вероятности в данном процессе рассматриваются при условиях времени или дополнительных элементах.

Детальное изучение Марковских моделей и процессов выявляет вопрос об удовлетворении равновесия в различных сферах жизни и деятельности общества. С учетом того, что данная отрасль затрагивает науку и массовое обслуживание, ситуацию можно исправить, проанализировав и спрогнозировав исход каких-либо событий или действий тех же неисправных часов или техники. Чтобы полностью использовать возможности Марковского процесса, стоит детально в них разбираться. Ведь этот аппарат нашел широкое применение не только в науке, но и в играх. Эта система в чистом виде обычно не рассматривается, а если и используется, то только на основе вышеупомянутых моделей и схем.

Для системы массового обслуживания характерен случайный процесс. Изучение случайного процесса, протекающего в системе, выражение его математически и является предметом теории массового обслуживания.

Математический анализ работы системы массового обслуживания значительно облегчается, если случайный процесс этой работы является марковским. Процесс, протекающий в системе, называется марковским, если в любой момент времени вероятность любого состояния системы в будущем зависит только от состояния системы в текущий момент и не зависит от того, каким образом система пришла в это состояние. При исследовании экономических систем наибольшее применение имеют марковские случайные процессы с дискретными и непрерывными состояниями.

Случайный процесс называется процессом с дискретными состояниями, если все его возможные состояния можно заранее перечислить, а сам процесс состоит в том, что время от времени система скачком переходит из одного состояния в другое.

Случайный процесс называется процессом с непрерывным состоянием, если для него характерен плавный, постепенный переход из состояния в состояние.

Также можно выделить марковские процессы с дискретным и непрерывным временем. В первом случае переходы системы из одного состояния в другое возможны только в строго определенные, заранее фиксированные моменты времени. Во втором случае переход системы из состояния в состояние возможен в любой, заранее неизвестный, случайный момент. Если вероятность перехода не зависит от времени, то марковский процесс называют однородным.

В исследовании систем массового обслуживания большое значение имеют случайные марковские процессы с дискретными состояниями и непрерывным временем.

Исследование марковских процессов сводится к изучению матриц переходных вероятностей (). Каждый элемент такой матрицы (поток событий) представляет собой вероятность перехода из заданного состояния (которому соответствует строка) к следующему состоянию (которому соответствует столбец). В этой матрице предусмотрены все возможные переходы данного множества состояний. Следовательно, процессы, которые можно описывать и моделировать с помощью матриц переходных вероятностей, должны обладать зависимостью вероятности конкретного состояния от непосредственно предшествующего состояния. Так выстраивается цепь Маркова. При этом цепью Маркова первого порядка называется процесс, для которого каждое конкретное состояние зависит только от его предшествующего состояния. Цепью Маркова второго и более высоких порядков называется процесс, в котором текущее состояние зависит от двух и более предшествующих.

Ниже представлены два примера матриц переходных вероятностей.

Матрицы переходных вероятностей можно изобразить графами переходных состояний, как показано на рисунке.

Пример

Предприятие выпускает продукт, насытивший рынок. Если предприятие от реализации продукта в текущем месяце получит прибыль (П), то с вероятностью 0,7 получит прибыль и в следующем месяце, а с вероятностью 0,3 – убыток. Если в текущем месяце предприятие получит убыток (У), то с вероятностью 0,4 в следующем месяце оно получит прибыль, а с вероятностью 0,6 – убыток (вероятностные оценки получены в результате опроса экспертов). Рассчитать вероятностную оценку получения прибыли от реализации товара через два месяца работы предприятия.

В матричной форме эта информация будет выражена следующим образом (что соответствует примеру матрицы 1):

Первая итерация – построение матрицы двухступенчатых переходов.

Если предприятие в текущем месяце получит прибыль, то вероятность того, что в следующем месяце оно снова получит прибыль, равна

Если предприятие в текущем месяце получит прибыль, то вероятность того, что в следующем месяце оно получит убыток, равна

Если предприятие в текущем месяце получит убыток, то вероятность того, что в следующем месяце оно получит прибыль, равна

Если предприятие в текущем месяце получит убыток, то вероятность того, что в следующем месяце оно вновь получит убыток, равна

В результате расчетов получаем матрицу двухступенчатых переходов:

Результат достигается перемножением матрицы т,на матрицу с такими же значениями вероятностей:

Для проведения этих процедур в среде Excel необходимо выполнить следующие действия:

  • 1) формировать матрицу;
  • 2) вызывать функцию МУМНОЖ;
  • 3) указывать первый массив – матрицу;
  • 4) указывать второй массив (эта же матрица или другая);
  • 5) ОК;
  • 6) выделить зону новой матрицы;
  • 7) F2;
  • 8) Ctrl+Shift+Enter;
  • 9) получить новую матрицу.

Вторая итерация – построение матрицы трехступенчатых переходов. Аналогично рассчитываются вероятности получения прибыли или убытка на следующем шаге и рассчитывается матрица трехступенчатых переходов, она имеет следующий вид:

Таким образом, в ближайшие два месяца работы предприятия вероятность получения прибыли от выпуска продукта выше, по сравнению с вероятностью получения убытка. Однако следует заметить, что вероятность получения прибыли падает, поэтому предприятию необходимо осуществить разработку нового продукта для замены производимого продукта.

Случайным процессом называется множество или семейство случайных величин, значения которых индексируются временным параметром. Например, число студентов в аудитории, атмосферное давление или температура в этой аудитории как функции времени являются случайными процессами.

Случайные процессы находят широкое применение при изучении сложных стохастических систем как адекватные математические модели процесса функционирования таких систем.

Основными понятиями для случайных процессов являются понятия состояния процесса иперехода его из одного состояния в другое.

Значения переменных, которые описывают случайный процесс, в данный момент времени называются состоянием случайного процесса . Случайный процесс совершает переход из одного состояния в другое, если значения переменных, задающих одно состояние, изменяются на значения, которые определяют другое состояние.

Число возможных состояний (пространство состояний) случайного процесса может быть конечным или бесконечным. Если число возможных состояний конечно или счетно (всем возможным состояниям могут быть присвоены порядковые номера), то случайный процесс называется процессом с дискретными состояниями . Например, число покупателей в магазине, число клиентов в банке в течение дня описываются случайными процессами с дискретными состояниями.

Если переменные, описывающие случайный процесс, могут принимать любые значения из конечного или бесконечного непрерывного интервала, а, значит, число состояний несчетно, то случайный процесс называется процессом с непрерывными состояниями . Например, температура воздуха в течение суток является случайным процессом с непрерывными состояниями.

Для случайных процессов с дискретными состояниями характерны скачкообразные переходы из одного состояния в другое, тогда, как в процессах с непрерывными состояниями переходы являются плавными. Далее будем рассматривать только процессы с дискретными состояниями, которых часто называют цепями .

Обозначим через g (t ) случайный процесс с дискретными состояниями, а возможные значенияg (t ), т.е. возможные состояния цепи, - через символыE 0 , E 1 , E 2 , … . Иногда для обозначения дискретных состояний используют числа 0, 1, 2,... из натурального ряда.

Случайный процесс g (t ) называетсяпроцессом с дискретным временем , если переходы процесса из состояния в состояние возможны только в строго определенные, заранее фиксированные моменты времениt 0 , t 1 , t 2 , … . Если переход процесса из состояния в состояние возможен в любой, заранее неизвестный момент времени, то случайный процесс называетсяпроцессом с непрерывным временем . В первом случае, очевидно, что интервалы времени между переходами являются детерминированными, а во втором - случайными величинами.

Процесс с дискретным временем имеет место либо, когда структура системы, которая описывается этим процессом, такова, что ее состояния могут изменяться только в заранее определенные моменты времени, либо когда предполагается, что для описания процесса (системы) достаточно знать состояния в определенные моменты времени. Тогда эти моменты можно пронумеровать и говорить о состоянии E i в момент времени t i .

Случайные процессы с дискретными состояниями могут изображаться в виде графа переходов (или состояний), в котором вершины соответствуют состояниям, а ориентированные дуги - переходам из одного состояния в другое. Если из состояния E i возможен переход только в одно состояниеE j , то этот факт на графе переходов отражается дугой, направленной из вершиныE i в вершинуE j (рис.1,а). Переходы из одного состояния в несколько других состояний и из нескольких состояний в одно состояние отражается на графе переходов, как показано на рис.1,б и 1,в.



Рассказать друзьям