Мертвые не учат. Будущие врачи изучают тело человека только по муляжам

💖 Нравится? Поделись с друзьями ссылкой

Андреас Везалий совершил анатомическую революцию, не только создав удивительные пособия, но и воспитав талантливых учеников, продолжавших прорывные исследования. В этом посте мы дойдем до анатомических иллюстраций эпохи барокко и потрясающего атласа голландского анатома Говарда Бидлоо, а также покажем иллюстрации из первого русского анатомического атласа, которые нам достались благодаря любезности сотрудников медицинской библиотеки Нью-Йорка.

XVII век: от кругов кровообращения до врачей Петра Великого

Университет Падуи в XVII веке сохранил преемственность, оставшись чем-то вроде современного MIT , но для анатомов раннего Нового времени.
История анатомии и анатомической иллюстрации XVII века начинается с Иеронима Фабрициуса (Hieronymus Fabricius). Он был учеником Фаллопия и после окончания университета тоже стал исследователем и преподавателем. Среди его достижений описание тонкого строения органов пищеварительного тракта, гортани и головного мозга . Он впервые предложил прообраз деления коры больших полушарий на доли, выделив центральную борозду. Также этот ученый открыл клапаны в венах, препятствующие обратному току крови. Помимо этого Фабрициус оказался неплохим популяризатором - он первым начал практику анатомических театров.
Фабрициус много работал с животными, что дало ему возможность внести вклад в зоологию (он описал фабрициеву сумку, ключевой орган иммунной системы птиц) и эмбриологию (он описывал стадии развития птичьих яиц и дал название яичникам - ovarium).
Фабрициус, как и многие анатомы, работал над атласом. При этом его подход был действительно основательным. Во-первых, он включил в атлас иллюстрации не только анатомии человека, но и животных. К тому же, Фабрициус решил, что работы должны быть выполнены в цвете и масштабе 1:1. Атлас, созданный под его руководством включал около 300 иллюстрированных таблиц, однако после смерти ученого они на время были утрачены, а повторно обнаружены лишь в 1909 году в государственной библиотеке Венеции. К тому моменту остались целы 169 таблиц.


Иллюстрации из таблиц Фабрициуса (). Работы соответствуют изобразительному уровню, который могли продемонстрировать живописцы того времени.

Фабрициус, как и его предшественники, сумел продолжить и развить итальянскую анатомическую школу. Среди его учеников и коллег был Джулио Кассери (Giulio Cesare Casseri). Этот ученый и профессор того же университета Падуи родился в 1552 году, а скончался в 1616. Последние годы жизни он посвятил работе над атласом, который назывался точно так же, как и многие другие атласы того времени, “Tabulae Anatomicae”. Ему помогали художник Одоардо Фалетти (Odoardo Fialetti) и гравёр Франческо Валезио. Однако сама работа была опубликована уже после смерти анатома, в 1627 году.


Иллюстрации из таблиц Кассерио ().

Фабрициус и Кассери вошли в историю анатомического знания еще и тем, что оба были учителями Уильяма Харви (William Harvey - у нас его фамилия более известна в транскрипции Гарвей), который перевел изучение строения человеческого тела еще на уровень выше. Харви родился в Англии в 1578 году, но после учебы в Кембридже отправился в Падую. Он не был медицинским иллюстратором, но зато заострил внимание на том, что каждый орган человеческого тела важен прежде всего не тем, как он выглядит или где расположен, а тем, какую функцию он выполняет. Благодаря своему функциональному подходу к анатомии, Харви смог описать круги кровообращения. До него считалось, что кровь образуется в сердце и с каждым скоращением сердечной мышцы доставляется до всех органов. Никому не приходило в голову, что будь оно на самом деле так, каждый час в организме должно было бы образовываться порядка 250 литров крови.

Видным анатомическим иллюстратором первой половины семнадцатого столетия был Пьетро да Кортона (Pietro da Cortona , также известный как Пьетро Берреттини).
Да Кортона не был анатомом. Более того, он известен, как один из ключевых художников и архитекторов эпохи барокко. И надо сказать, что его анатомические иллюстрации не были столь впечатляющими, как живописные работы:




Анатомические иллюстрации Барреттини ().


Фреска “Триумф божественного провидения”, над которой Барреттини работал с 1633 по 1639 год ().

Анатомические иллюстрации Барреттини были сделаны предположительно в 1618 году, в ранний период творчества мастера, на основе вскрытий, проводившихся в Госпитале Святого духа в Риме. Как и в ряде других случаев, по ним были сделаны гравюры, которые не были отпечатаны до 1741 года. В работах Барреттини интересны композиционные решения и изображение препарированных тел в живых позах на фоне зданий и пейзажей.

Кстати, в то время художники обращались к теме анатомии не только для изображения внутренних органов человека, но и для демонстрации самого процесса вскрытия и работы анатомических театров. Стоит упомянуть знаменитую картину Рембрандта “Урок анатомии доктора Тульпа”:


Картина “Урок анатомии доктора Тульпа”, написанная в 1632 году.

Впрочем, этот сюжет был популярен:


Anatomy Lesson of Dr. Willem van der Meer Более ранняя картина, демонстрирующая учебное вскрытие - “Урок анатомии доктора Уильяма ван дер Меера”, написанная Михилем ван Миревельтом в 1617 году.

Вторая половина XVII века в истории медицинской иллюстрации примечательна благодаря труду Говарда Бидлоо (Govard Bidloo). Он родился в 1649 году в Амстердаме и выучился на врача и анатома в университете города Франекер в Голландии, после чего отправился преподавать технику анатомирования в Гаагу. Книга Бидлоо «Анатомия человеческого тела в 105 таблицах, изображенных с натуры » стала одним из самых известных анатомических атласов XVII-XVIII веков и отличалась детальностью и аккуратностью иллюстраций. Она вышла в 1685 году, и позднее была переведенаа на русский язык по распоряжению Петра I, который принял решение развивать медицинское образование в России. Личным доктором Петра стал племянник Бидлоо Николаас (Николай Ламбертович), который в 1707 году основал первую в России госпитальную медико-хирургическую школу и госпиталь в Лефортово, нынешний Главный военный клинический госпиталь имени Н. Н. Бурденко.



По иллюстрациям из атласа Бидлоо видна тенденция к более точной, чем раньше, прорисовке деталей и большей образовательной ценнности материала. Художественная составляющая отходит на второй план, хотя все еще заметна. Взято отсюда и отсюда .

XVIII век: экспонаты Кунсткамеры, восковые анатомические модели и первый русский атлас

Одним из наиболее талантливых и умелых анатомов в Италии начала XVIII века был Джованни Доминик Санторини (Giovanni Domenico Santorini), который, к сожалению, прожил не очень долгую жизнь и стал автором только одного фундаментального труда под названием “Анатомические наблюдения ”. Это скорее анатомический учебник, нежели атлас - иллюстрации там есть только в приложении, но они заслуживают упоминания.


Иллюстрации из книги Санторини. .

В Нидерландах в то время жил и работал Фредерик Рюйш (Frederik Ruysch), который изобрел успешную технику бальзамирования. Русскому читателю он будет интересен тем, что именно его препараты легли в основу коллекции Кунсткамеры. Рюйш был знаком с Петром. Царь, будучи в Нидерландах, часто посещал его анатомические лекции и наблюдал за тем, как он проводит вскрытия.
Рюйш делал препараты и зарисовки в том числе детских скелетов и органов. Как и у более ранних авторов из Италии в его работах была не только дидактическая, но и художественной составляющая. Несколько странная, впрочем.


Еще один видный анатом и физиолог того времени, Альбрехт фот Галлер (Albrecht von Haller), жил и работал в Швейцарии. Он знаменит тем, что ввел понятие раздражимости - способности мышц (а впоследствии и желез) реагировать на возбуждение нервов. Он написал несколько книг по анатомии, к которым были сделаны детальные иллюстрации.


Иллюстрации книг фон Галлера. .

Вторая половина XVIII века в физиологии запомнилась работами Джона Хантера (John Hunter) в Шотландии. Он внес большой вклад в развитие хирургии, описание анатомии зубов, изучение восполительных процессов и процессов роста и заживления костей. Наиболее известным трудом Хантера стала книга “Observations on certain parts of the animal oeconomy ”


В XVIII веке был создан первый анатомический атлас, одним из авторов которого стал русский врач, анатом и рисовальщик Мартин Ильич Шеин . Атлас назывался “Словник, или иллюстрированный указатель всех частей человеческого тела” (Syllabus, seu indexem omnium partius corporis humani figuris illustratus). Одна из его копий хранится в библиотеке Нью-Йоркской академии медицины . Сотрудники библиотеки любезно согласились прислать нам сканы нескольких страниц атласа, впервые изданного в 1757 году. Вероятно, эти иллюстрации впервые публикуютя в интернете.


Наука механика потому столь благородна
и полезна более всех прочих наук, что,
как оказывается, все живые существа,
имеющие способность к движению,
действуют по ее законам.

Леонардо да Винчи

Познай себя!

Двигательный аппарат человека — это самодвижущийся механизм, состоящий из 600 мышц, 200 костей, нескольких сотен сухожилий. Эти цифры приблизительны, поскольку некоторые кости (например, кости позвоночного столба, грудной клетки) срослись друг с другом, а многие мышцы имеют несколько головок (например, двуглавая мышца плеча, четырехглавая мышца бедра) или делятся на множество пучков (дельтовидная, большая грудная, прямая мышца живота, широчайшая мышца спины и многие другие). Считается, что двигательная деятельность человека сравнима по сложности с человеческим мозгом — самым совершенным созданием природы. И подобно тому как изучение мозга начинают с исследования его элементов (нейронов), так и в биомеханике прежде всего изучают свойства элементов двигательного аппарата.


Двигательный аппарат состоит из звеньев. Звеном называется часть тела, расположенная между двумя соседними суставами или между суставом и дистальным концом. Например, звеньями тела являются: кисть, предплечье, плечо, голова и т. д.


ГЕОМЕТРИЯ МАСС ТЕЛА ЧЕЛОВЕКА

Геометрией масс называется распределение масс между звеньями тела и внутри звеньев. Геометрия масс количественно описывается масс-инерционными характеристиками. Важнейшие из них — масса, радиус инерции, момент инерции и координаты центра масс.


Масса (т) —это количество вещества (в килограммах), содержащееся в теле или отдельном звене.


Вместе с тем масса — это количественная мера инертности тела по отношению к действующей на него силе. Чем больше масса, тем инертнее тело и тем труднее вывести его из состояния покоя или изменить его движение.

Массой определяются гравитационные свойства тела. Вес тела (в Ньютонах)


ускорение свободнопадающего тела.


Масса характеризует инертность тела при поступательном движении. При вращении инертность зависит не только от массы, но и от того, как она распределена относительно оси вращения. Чем больше расстояние от звена до оси вращения, тем больше вклад этого звена в инертность тела. Количественной мерой инертности тела при вращательном движении служит момент инерции:


где R ин — радиус инерции — среднее расстояние от оси вращения (например, от оси сустава) до материальных точек тела.


Центром масс называется точка, где пересекаются линии действия всех сил, приводящих тело к поступательному движению и не вызывающих вращения тела. В поле гравитации (когда действует сила тяжести) центр масс совпадает с центром тяжести. Центр тяжести — точка, к которой приложена равнодействующая сил тяжести всех частей тела. Положение общего центра масс тела определяется тем, где находятся центры масс отдельных звеньев. А это зависит от позы, т. е. от того, как части тела расположены друг относительно друга в пространстве.


В человеческом теле около 70 звеньев. Но столь подробного описания геометрии масс чаще всего и не требуется. Для решения большинства практических задач достаточно 15-звенной модели человеческого тела (рис. 7). Понятно, что в 15-звенной модели некоторые звенья состоят из нескольких элементарных звеньев. Поэтому такие укрупненные звенья правильнее называть сегментами.

Цифры на рис. 7 верны для “среднего человека”, они получены путем усреднения результатов исследования многих людей. Индивидуальные особенности человека, и в первую очередь масса и длина тела, влияют на геометрию масс.


Рис. 7. 15 — звенная модель человеческого тела: справа — способ деления тела на сегменты и масса каждого сегмента (в % к массе тела); слева — места расположения центров масс сегментов (в % к длине сегмента)— см. табл. 1 (по В. М. Зациорскому, А. С. Аруину, В. Н. Селуянову)

В. Н. Селуянов установил, что массы сегментов тела можно определить с помощью следующего уравнения:

где m х — масса одного из сегментов тела (кг), например стопы, голени, бедра и т. д.; m —масса всего тела (кг); H —длина тела (см); В 0 , В 1, В 2 — коэффициенты регрессионного уравнения, они различны для разных сегментов (табл. 1).


Примечание. Величины коэффициентов округлены и верны для взрослого мужчины.

Для того чтобы уяснить, как пользоваться таблицей 1 и другими подобными таблицами, вычислим, например, массу кисти человека, у которого масса тела равна 60 кг, а длина тела 170 см.


Таблица 1

Коэффициенты уравнения для вычисления массы сегментов тела по массе (т) и длине (Я) тела

Сегменты

Коэффициенты уравнения



В 0


В 1


В 2

Стопа
Голень
Бедро
Кисть
Предплечье
Плечо
Голова
Верхняя часть туловища
Средняя часть туловища
Нижняя часть туловища

—0,83
—1,59
—2,65
—0,12
0,32
0,25
1,30
8,21
7,18
—7,50

0,008
0,036
0,146
0,004
0,014
0,030
0,017
0,186
0,223
0,098

0,007
0,012
0,014
0,002
—0,001
—0,003
0,014
—0,058
—0,066
0,049


Масса кисти = - 0,12 + 0,004х60+0,002х170 = 0,46 кг. Зная, каковы массы и моменты инерции звеньев тела и где расположены их центры масс, можно решить много важных практических задач. В том числе:


— определить количество движения, равное произведению массы тела на его линейную скорость (m·v);


определить кинетический момент, равный произведению момента инерции тела на угловую скорость (J w ); при этом нужно учитывать, что величины момента инерции относительно разных осей неодинаковы;


— оценить, легко или трудно управлять скоростью тела или отдельного звена;

— определить степень устойчивости тела и т. д.

Из этой формулы видно, что при вращательном движении относительно той же оси инертность человеческого тела зависит не только от массы, но и от позы. Приведем пример.


На рис. 8 изображена фигуристка, выполняющая вращение. На рис. 8, А спортсменка вращается быстро и делает около 10 оборотов в секунду. В позе, изображенной на рис. 8, Б, вращение резко замедляется и затем прекращается. Это происходит потому, что, отводя руки в стороны, фигуристка делает свое тело инертнее: хотя масса ( m ) остается той же, увеличивается радиус инерции (R ин ) и, следовательно, момент инерции.



Рис. 8. Замедление вращения при изменении позы: А — меньшая; Б — большая величина радиуса инерции и момента инерции, который пропорционален квадрату радиуса инерции (I=m · R ин )


Еще одной иллюстрацией сказанному может быть шуточная задача: что тяжелее (точнее, инертнее)—килограмм железа или килограмм ваты? При поступательном движении их инертность одинакова. При круговом движении труднее перемещать вату. Ее материальные точки дальше отстоят от оси вращения, и поэтому момент инерции значительно больше.

ЗВЕНЬЯ ТЕЛА КАК РЫЧАГИ И МАЯТНИКИ

Биомеханические звенья представляют собой своеобразные рычаги и маятники.


Как известно, рычаги бывают первого рода (когда силы приложены по разные стороны от точки опоры) и второго рода. Пример рычага второго рода представлен на рис. 9, А: гравитационная сила (F 1) и противодействующая ей сила мышечной тяги (F 2) приложены по одну сторону от точки опоры, находящейся в данном случае в локтевом суставе. Подобных рычагов в теле человека большинство. Но есть и рычаги первого рода, например голова (рис. 9, Б) и таз в основной стойке.


Задание: найдите рычаг первого рода на рис. 9, А.

Рычаг находится в равновесии, если равны моменты противодействующих сил (см. рис. 9,А):


F 2 —сила тяги двуглавой мышцы плеча; l 2 — короткое плечо рычага, равное расстоянию от места прикрепления сухожилия до оси вращения; α — угол между направлением действия силы и перпендикуляром к продольной оси предплечья.


Рычажное устройство двигательного аппарата дает человеку возможность выполнять дальние броски, сильные удары и т. п. Но ничто на свете даром не дается. Мы выигрываем в скорости и мощности движения ценой увеличения силы мышечного сокращения. Например, для того чтобы, сгибая руку в локтевом суставе, перемещать груз массой 1 кг (т. е. с силой тяжести 10 Н) так, как показано на рис. 9, Л, двуглавая мышца плеча должна развить силу 100—200 Н.


“Обмен” силы на скорость тем более выражен, чем больше соотношение плеч рычага. Проиллюстрируем это важное положение примером из гребли (рис. 10). Все точки весла-тела, движущегося вокруг оси, имеют одну и ту же угловую скорость



Но их линейные скорости неодинаковы. Линейная скорость (v) тем выше, чем больше радиус вращения (г):


Следовательно, для увеличения скорости нужно увеличивать радиус вращения. Но тогда придется во столько же раз увеличить и силу, прикладываемую к веслу. Именно поэтому длинным веслом труднее грести, чем коротким, бросить тяжелый предмет на дальнюю дистанцию труднее, чем на близкую, и т. д. Об этом знал еще Архимед, руководивший обороной Сиракуз от римлян и изобретавший рычажные приспособления для метания камней.

Руки и ноги человека могут совершать колебательные движения. Это делает наши конечности похожими на маятники. Наименьшие затраты энергии на перемещение конечностей имеют место, когда частота движений на 20— 30% больше частоты собственных колебаний руки или ноги:

где (g= 9,8 м/с 2 ; l — длина маятника, равная расстоянию от точки подвеса до центра масс руки или ноги.

Эти 20—30% объясняются тем, что нога не является однозвенным цилиндром, а состоит из трех сегментов (бедра, голени и стопы). Обратите внимание: собственная частота колебаний не зависит от массы качающегося тела, но уменьшается при увеличении длины маятника.

Делая частоту шагов или гребков при ходьбе, беге, плавании и т. п. резонансной (т. е. близкой к собственной частоте колебаний руки или ноги), удается минимизировать затраты энергии.

Замечено, что при наиболее экономичном сочетании частоты и длины шагов или гребков человек демонстрирует существенно повышенную физическую работоспособность. Это полезно учитывать не только при тренировке спортсменов, но и при проведении физкультурных занятий в школах и группах здоровья.


Любознательный читатель может спросить: чем объясняется высокая экономичность движений, выполняемых с резонансной частотой? Это происходит потому, что колебательные движения верхних и нижних конечностей сопровождаются рекуперацией механической энергии (от лат. recuperatio — получение вновь или повторное использование). Простейшая форма рекуперации — переход потенциальной энергии в кинетическую, затем снова в потенциальную и т. д. (рис. 11). При резонансной частоте движений такие преобразования осуществляются с минимальными потерями энергии. Это означает, что метаболическая энергия, однажды созданная в мышечных клетках и перешедшая в форму механической энергии, используется многократно — и в этом цикле движений, и в последующих. А если так, то потребность в притоке метаболической энергии уменьшается.



Рис. 11. Один из вариантов рекуперации энергии при циклических движениях: потенциальная энергия тела (сплошная линия) переходит в кинетическую (пунктир), которая вновь преобразуется в потенциальную и способствует переходу тела гимнаста в верхнее положение; цифры на графике соответствуют пронумерованным позам спортсмена

Благодаря рекуперации энергии выполнение циклических движений с темпом, близким к резонансной частоте колебаний конечностей,— эффективный способ сохранения и накопления энергии. Резонансные колебания способствуют концентрации энергии, и в мире неживой природы они иногда небезопасны. Например, известны случаи разрушения моста, когда по нему шло воинское подразделение, четко отбивая шаг. Поэтому по мосту положено идти не в ногу.

МЕХАНИЧЕСКИЕ СВОЙСТВА КОСТЕЙ И СУСТАВОВ


Механические свойства костей определяются их разнообразными функциями; кроме двигательной, они выполняют защитную и опорную функции.


Кости черепа, грудной клетки и таза защищают внутренние органы. Опорную функцию костей выполняют кости конечностей и позвоночника.

Кости ног и рук продолговатые и трубчатые. Трубчатое строение костей обеспечивает противодействие значительным нагрузкам и вместе с тем в 2—2,5 раза снижает их массу и значительно уменьшает моменты инерции.

Различают четыре вида механического воздействия на кость: растяжение, сжатие, изгиб и кручение.


При растягивающей продольной силе кость выдерживает напряжение 150 Н/мм 2 . Это в 30 раз больше, чем давление, разрушающее кирпич. Установлено, что прочность кости на растяжение выше, чем у дуба, и почти равна прочности чугуна.


При сжатии прочность костей еще выше. Так, самая массивная кость— большеберцовая выдерживает вес 27 человек. Предельная сила сжатия составляет 16000— 18000 Н.

При изгибе кости человека также выдерживают значительные нагрузки. Например, силы 12000 Н (1,2 т) недостаточно, чтобы сломать бедренную кость. Подобный вид деформации широко встречается и в повседневной жизни, и в спортивной практике. Например, сегменты верхней конечности деформируются на изгиб при удержании положения “крест” в висе на кольцах.


При движениях кости не только растягиваются, сжимаются и изгибаются, но также и скручиваются. Например, при ходьбе человека моменты скручивающих сил могут достичь 15 Нм. Эта величина в несколько раз меньше предела прочности костей. Действительно, для разрушения, например, большеберцовой кости момент скручивающей силы должен достичь 30—140 Нм (Сведения о величинах сил и моментов сил, приводящих к деформации костей, приблизительны, а цифры, по-видимому, занижены, поскольку получены преимущественно на трупном материале. Но и они свидетельствуют о многократном запасе прочности человеческого скелета. В некоторых странах практикуется прижизненное определение прочности костей. Такие исследования хорошо оплачиваются, но приводят к увечьям или гибели испытателей и потому антигуманны ).


Таблица 2

Величины силы, действующей на головку бедренной кости
(по X. А. Янсону, 1975 г., переработано)

Вид двигательной деятельности


Величина силы (по Вид двигательной деятельности отношению к силе тяжести тела)


Сидение


0,08


Стояние на двух ногах


0,25


Стояние на одной ноге


2,00


Ходьба по ровной поверхности


1,66


Подъем и спуск по наклонной поверхности


2,08


Быстрая ходьба


3,58


Особенно велики допустимые механические нагрузки у спортсменов, потому что регулярные тренировки приводят к рабочей гипертрофии костей. Известно, что у штангистов утолщаются кости ног и позвоночника, у футболистов — внешняя часть кости плюсны, у теннисистов — кости предплечья и т. д.


Механические свойства суставов зависят от их строения. Суставная поверхность смачивается синовиальной жидкостью, которую, как в капсуле, хранит суставная сумка. Синовиальная жидкость обеспечивает уменьшение коэффициента трения в суставе примерно в 20 раз. Поразителен характер действия “выжимающейся” смазки, которая при снижении нагрузки на сустав поглощается губчатыми образованиями сустава, а при увеличении нагрузки выжимается для смачивания поверхности сустава и уменьшения коэффициента трения.


Действительно, величины сил, воздействующих на суставные поверхности, огромны и зависят от вида деятельности и ее интенсивности (табл. 2).

Примечание. Еще выше силы, действующие на коленный сустав; при массе тела 90 кг они достигают: при ходьбе 7000 Н, при беге 20000 Н.


Прочность суставов, как и прочность костей, небеспредельна. Так, давление в суставном хряще не должно превышать 350 Н/см 2 . При более высоком давлении прекращается смазка суставного хряща и увеличивается опасность его механического стирания. Это нужно учитывать в особенности при проведении туристических походов (когда человек несет тяжелый груз) и при организации оздоровительных занятий с людьми среднего и пожилого возраста. Ведь известно, что с возрастом смазывание суставной сумки становится менее обильным.


БИОМЕХАНИКА МЫШЦ

Скелетные мышцы являются основным источником механической энергии человеческого тела. Их можно сравнить с двигателем. На чем же основан принцип действия такого “живого двигателя”? Что приводит в действие мышцу и какие свойства она при этом проявляет? Как мышцы взаимодействуют между собой? И наконец, какие режимы функционирования мышц являются наилучшими? Ответы на эти вопросы вы найдете в настоящем разделе.

Биомеханические свойства мышц

К ним относятся сократимость, а также упругость, .жесткость, прочность и релаксация.


Сократимость — это способность мышцы сокращаться при возбуждении. В результате сокращения происходит укорочение мышцы и возникает сила тяги.


Для рассказа о механических свойствах мышцы воспользуемся моделью (рис. 12), в которой соединительнотканные образования (параллельный упругий компонент) имеют механический аналог в виде пружины (1). К соединительнотканным образованиям относятся: оболочка мышечных волокон и их пучков, сарколемма и фасции.


При сокращении мышцы образуются поперечные актино-миозиновые мостики, от числа которых зависит сила сокращения мышцы. Актино-миозиновые мостики сократительного компонента изображаются на модели в виде цилиндра, в котором движется поршень (2).


Аналогом последовательного упругого компонента является пружина (3), последовательно соединенная с цилиндром. Она моделирует сухожилие и те миофибриллы (сократительные нити, составляющие мышцу), которые в данный момент не участвуют в сокращении.



По закону Гука для мышцы ее удлинение нелинейно зависит от величины растягивающей силы (рис. 13). Эта кривая (ее называют “сила — длина”) является одной из характеристических зависимостей, описывающих закономерности мышечного сокращения. Другую характеристическую зависимость “сила — скорость” называют в честь изучавшего ее известного английского физиолога кривой Хилла (рис. 14) (Так принято сегодня называть эту важную зависимость. На самом деле А. Хилл изучал только преодолевающие движения (правую часть графика на рис. 14). Взаимосвязь между силой и скоростью при уступающих движениях впервые исследовал Abbot. ).

Прочность мышцы оценивается величиной растягивающей силы, при которой происходит разрыв мышцы. Предельное значение растягивающей силы определяется по кривой Хилла (см. рис. 14). Сила, при которой происходит разрыв мышцы (в пересчете на 1 мм 2 ее поперечного сечения), составляет от 0,1 до 0,3 Н/мм 2 . Для сравнения: предел прочности сухожилия около 50 Н/мм 2 , а фасций около 14 Н/мм 2 . Возникает вопрос: почему иногда рвется сухожилие, а мышца остается целой? По-видимому, это может происходить при очень быстрых движениях: мышца успевает самортизировать, а сухожилие нет.


Релаксация — свойство мышцы, проявляющееся в постепенном уменьшении силы тяги при постоянной длине мышцы. Релаксация проявляется, например, при спрыгивании и прыжке вверх, если во время глубокого подседа человек делает паузу. Чем пауза длительнее, тем сила отталкивания и высота выпрыгивания меньше.


Режимы сокращения и разновидности работы мышц

Мышцы, прикрепленные сухожилиями к костям, функционируют в изометрическом и анизометрическом режимах (см. рис. 14).

При изометрическом (удерживающем) режиме длина мышцы не изменяется (от греч. “изо” — равный, “метр”— длина). Например, в режиме изометрического сокращения работают мышцы человека, который подтянулся и удерживает свое тело в этом положении. Аналогичные примеры: “крест Азаряна” на кольцах, удержание штанги и т. п.


На кривой Хилла изометрическому режиму соответствует величина статической силы (F 0), при которой скорость сокращения мышцы равна нулю.


Замечено, что статическая сила, проявляемая спортсменом в изометрическом режиме, зависит от режима предшествующей работы. Если мышца функционировала в уступающем режиме, то F 0 больше, чем в том случае, когда выполнялась преодолевающая работа. Именно поэтому, например, “крест Азаряна” легче выполнить, если спортсмен приходит в него из верхнего положения, а не из нижнего.


При анизометрическом сокращении мышца укорачивается или удлиняется. В анизометрическом режиме функционируют мышцы бегуна, пловца, велосипедиста и т. д.

У анизометрического режима две разновидности. В преодолевающем режиме мышца укорачивается в результате сокращения. А в уступающем режиме мышца растягивается внешней силой. Например, икроножная мышца спринтера функционирует в уступающем режиме при взаимодействии ноги с опорой в фазе амортизации, а в преодолевающем режиме — в фазе отталкивания.

Правая часть кривой Хилла (см. рис. 14) отображает закономерности преодолевающей работы, при которой возрастание скорости сокращения мышцы вызывает уменьшение силы тяги. А в уступающем режиме наблюдается обратная картина: увеличение скорости растяжения мышцы сопровождается увеличением силы тяги. Это является причиной многочисленных травм у спортсменов (например, разрыва ахиллова сухожилия у спринтеров и прыгунов в длину).

Рис. 15. Мощность мышечного сокращения в зависимости от проявляемой силы и скорости; заштрихованный прямоугольник соответствует максимальной мощности

Групповое взаимодействие мышц

Существуют два случая группового взаимодействия мышц: синергизм и антагонизм.


Мышцы-синергисты перемещают звенья тела в одном направлении. Например, в сгибании руки в локтевом суставе участвуют двуглавая мышца плеча, плечевая и плечелучевая мышцы и т. д. Результатом синергического взаимодействия мышц служит увеличение результирующей силы действия. Но этим значение синергизма мышц не исчерпывается. При наличии травмы, а также при локальном утомлении какой-либо мышцы ее синергисты обеспечивают выполнение двигательного действия.


Мышцы-антагонисты (в противоположность мышцам-синергистам) имеют разнонаправленное действие. Так, если одна из них выполняет преодолевающую работу, то другая — уступающую. Существованием мышц-антагонистов обеспечивается: 1) высокая точность двигательных действий; 2) снижение травматизма.


Мощность и эффективность мышечного сокращения


По мере увеличения скорости мышечного сокращения сила тяги мышцы, функционирующей в преодолевающем режиме, снижается по гиперболическому закону (см. рис. 14). Известно, что механическая мощность равна произведению силы на скорость. Существуют сила и скорость, при которых мощность мышечного сокращения наибольшая (рис. 15). Этот режим имеет место, когда и сила, и скорость составляют примерно 30% от максимально возможных величин.

Изучение сложного строения человеческого тела и схемы расположения внутренних органов – этим занимает анатомия человека. Дисциплина помогает разобраться с устройством нашего организма, который является одним из самых сложных на планете. Все его части выполняют строго определенные функции и все они взаимосвязаны между собой. Современная анатомия – наука, которая различает как то, что мы наблюдаем визуально, так и скрытое от глаз строение тела человека.

Что такое анатомия человека

Так называется один из разделов биологии и морфологии (наряду с цитологией и гистологией), изучающий строение организма человека, его происхождение, формирование, эволюционное развитие на уровне выше клеточного. Анатомия (от греч. Anatomia – разрез, вскрытие, рассечение) изучает, как выглядят внешние части тела. Также она описывает внутреннюю среду и микроскопическое строение органов.

Выделение анатомии человека из сравнительных анатомий всех живых организмов обусловлено наличием мышления. Существует несколько основных форм этой науки:

  1. Нормальная, или систематическая. Этот раздел изучает тело «нормального», т.е. здорового человека по тканям, органам, их системам.
  2. Патологическая. Это научно-прикладная дисциплина, изучающая болезни.
  3. Топографическая, или хирургическая. Так называется, потому что имеет прикладное значение для хирургии. Дополняет описательную анатомию человека.

Нормальная анатомия

Обширный материал привел к сложности изучения анатомии строения организма человека. По этой причине стало необходимым искусственно разделить его на части – системы органов. Они рассматриваются нормальной, или систематической, анатомией. Сложное она раскладывает на более простое. Нормальная анатомия человека изучает тело в здоровом состоянии. В этом ее отличие от патологической. Пластическая анатомия изучает внешний вид. Она используется при изображении фигуры человека.

  • топографическую;
  • типовую;
  • сравнительную;
  • теоретическую;
  • возрастную;
  • рентгеноанатомию.

Патологическая анатомия человека

Эта разновидность науки наряду с физиологией изучает изменения, происходящие с организмом человека при определенных заболеваниях. Анатомические исследования проводят микроскопическим путем, который помогает выявить патологические физиологические факторы в тканях, органах, их совокупностях. Объектом в этом случае выступают трупы лиц, умерших от разных болезней.

Исследование анатомии живого человека проводится при помощи безвредных методов. Эта дисциплина является обязательной в медицинских вузах. Анатомические знания здесь разделяются на:

  • общие, отражающие методы анатомических исследований патологических процессов;
  • частные, описывающие морфологические проявления отдельных заболеваний, например, туберкулеза, цирроза, ревматизма.

Топографическая (хирургическая)

Данная разновидность науки развилась в результате необходимости для практической медицины. Создателем ее считается врач Н.И. Пирогов. Научная анатомия человека изучает расположение элементов относительно друг друга, послойное строение, процесс лимфотока, кровоснабжение в здоровом организме. При этом учитываются половые особенности и изменения, связанные с возрастной анатомией.

Анатомическое строение человека

Функциональными элементами тела человека являются клетки. Их скопление образует ткань, из которой состоят все части тела. Последние объединяются в организме в системы:

  1. Пищеварительную. Считается самой сложной. Органы пищеварительной системы отвечают за процесс переваривания пищи.
  2. Сердечно-сосудистую. Функция кровеносной системы – кровоснабжение всех частей тела человека. Сюда входят и лимфатические сосуды.
  3. Эндокринную. Ее функцией является регулировка нервных и биологических процессов в организме.
  4. Мочеполовую. У мужчин и женщин она имеет отличия, обеспечивает репродуктивную и выделительную функции.
  5. Покровную. Защищает внутренности от внешних воздействий.
  6. Дыхательную. Насыщает кислородом кровь, перерабатывает в углекислый газ.
  7. Опорно-двигательную. Отвечает за передвижение человека, поддержание тела в определенном положении.
  8. Нервную. Включает спинной и головной мозг, которые регулируют все функции организма.

Строение внутренних органов человека

Раздел анатомии, изучающий внутренние системы человека, называется спланхнологией. К ним относят дыхательную, мочеполовую и пищеварительную. Каждая имеет характерные анатомические и функциональные связи. Их можно объединить по общему свойству обмена веществ между внешней средой и человеком. В эволюции организма считается, что дыхательная система отпочковывается от определенных отделов пищеварительного тракта.

Органы дыхательной системы

Обеспечивают непрерывное снабжение всех органов кислородом, удаление из них образующегося углекислого газа. Эта система разделяется на верхние и нижние дыхательные пути. Список первых включает:

  1. Нос. Производит слизь, которая при дыхании задерживает инородные частицы.
  2. Синусы. Заполненные воздухом полости в нижней челюсти, клиновидных, решетчатых, лобной костях.
  3. Глотку. Разделяется на носоглотку (обеспечивает ток воздуха), ротоглотку (содержат миндалины, несущие защитную функцию), гортаноглотку (служит проходом для пищи).
  4. Гортань. Не допускает попадания еды в дыхательные пути.

Другой отдел этой системы – это нижние дыхательные пути. Они включают органы грудной полости, представленные в следующем небольшом списке:

  1. Трахея. Начинается после гортани, протягивается вниз до грудной клетки. Отвечает за фильтрацию воздуха.
  2. Бронхи. Сходны по своему строению с трахеей, продолжают очищать воздух.
  3. Легкие. Расположены по обеим сторонам от сердца в грудной клетке. Каждое легкое отвечает за жизненно важный процесс обмена кислорода с углекислым газом.

Органы брюшной полости человека

Сложным строением обладает брюшная полость. Ее элементы располагаются по центру, слева и справа. Согласно анатомии человека, основные органы в брюшной полости следующие:

  1. Желудок. Находится слева под диафрагмой. Отвечает за первичное переваривание пищи, подает сигнал о сытости.
  2. Почки расположены внизу брюшины симметрично. Они выполняют мочевыделительную функцию. Вещество почки состоит из нефронов.
  3. Поджелудочная железа. Расположена чуть ниже желудка. Вырабатывает ферменты для переваривания.
  4. Печень. Находится справа под диафрагмой. Выводит яды, токсины, удаляет ненужные элементы.
  5. Селезенка. Располагается позади желудка, отвечает за иммунитет, обеспечивает кроветворение.
  6. Кишечник. Размещен внизу живота, всасывает все полезные вещества.
  7. Аппендикс. Является придатком слепой кишки. Его функция – защитная.
  8. Желчный пузырь. Располагается ниже печени. Накапливает поступающую желчь.

Мочеполовая система

Сюда относятся органы полости таза человека. У мужчин и женщин в строении этой части есть значительные различия. Они заключаются в органах, обеспечивающих репродуктивную функцию. В целом описание строения таза включает информацию о:

  1. Мочевом пузыре. Накапливает мочу до мочеиспускания. Расположен внизу перед лобковой костью.
  2. Половых органах женщины. Матка находится под мочевым пузырем, а яичники чуть выше над ней. Вырабатывают яйцеклетки, отвечающие за репродукцию.
  3. Половых органах мужчины. Предстательная железа тоже расположена под мочевым пузырем, ответственна за выработку секреторной жидкости. Яички находятся в мошонке, они образуют половые клетки и гормоны.

Эндокринные органы человека

Система, отвечающая за регуляцию деятельности человеческого организма посредством гормонов – эндокринная. Наука выделяет в ней два аппарата:

  1. Диффузный. Эндокринные клетки здесь не сконцентрированы в одном месте. Некоторые функции выполняют печень, почки, желудок, кишечник и селезенка.
  2. Гландулярный. Включает щитовидную, паращитовидные железы, тимус, гипофиз, надпочечники.

Щитовидка и паращитовидные железы

Самой крупной железой внутренней секреции является щитовидная. Она расположена на шее перед трахее, на боковых ее стенках. Частично железа прилегает к щитовидному хрящу, состоит из двух долей и перешейка, нужного для их соединения. Функция щитовидки – выработка гормонов, которые способствуют росту, развитию, регулируют обмен веществ. Недалеко от нее располагаются паращитовидные железы, имеющие следующие особенности строения:

  1. Количество. Их в организме 4 – 2 верхние, 2 нижние.
  2. Место. Расположены на задней поверхности боковых долей щитовидной железы.
  3. Функция. Отвечают за обмен кальция и фосфора (паратгормон).

Анатомия вилочковой железы

Тимус, или вилочковая железа, находится позади рукояти и части тела грудины в верхнепередней области грудной полости. Представляет собой две доли, связанные рыхлой соединительной тканью. Верхние концы тимуса более узкие, поэтому выходят за пределы грудной полости и достигают щитовидной железы. В этом органе лимфоциты приобретают свойства, которые обеспечивают защитные функции против чужеродных для организма клеток.

Строение и функции гипофиза

Небольшая железа шаровидной или овальной формы с красноватым оттенком – это гипофиз. Он связан непосредственно с головным мозгом. Гипофиз имеет две доли:

  1. Переднюю. Она влияет на рост и развитие всего тела в целом, стимулирует деятельности щитовидной железы, коры надпочечника, половых желез.
  2. Заднюю. Отвечает за усиление работы гладкой мускулатуры сосудов, повышает кровяное давление, влияет на реабсорбцию воды в почках.

Надпочечники, половые железы и эндокринная часть поджелудочной железы

Парный орган, находящийся над верхним концом почки в забрюшинной клетчатке – это надпочечник. На передней поверхности имеет одну или несколько борозд, выступающих воротами для выходящих вен и входящих артерий. Функции надпочечников: выработка адреналина в крови, нейтрализация токсинов в мышечных клетках. Другие элементы эндокринной системы:

  1. Половые железы. В яичках есть интерстициальные клетки, отвечающие за развитие вторичных половых признаков. Яичники выделяют фолликулин, который регулирует менструации, влияет на нервное состояние.
  2. Эндокринная часть поджелудочной железы. В ней содержатся панкреатические островки, который выделяют в кровь инсулин и глюкагон. Это обеспечивает регуляцию углеводного обмена.

Опорно-двигательная система

Эта система представляет собой совокупность структур, обеспечивающих опору частям тела и помогающих человеку передвигаться в пространстве. Весь аппарат делится на две части:

  1. Костно-суставной. С точки зрения механики, это система рычагов, которые в результате сокращения мышц передают воздействие сил. Эта часть считается пассивной.
  2. Мышечный. Активная часть опорно-двигательного аппарата – это мышцы, связки, сухожилия, хрящевые структуры, синовиальные сумки.

Анатомия костей и суставов

Скелет состоит из костей и суставов. Его функциями являются восприятие нагрузок, защита мягких тканей, реализация движений. Клетки костного мозга вырабатывают новые клетки крови. Суставами называются точки соприкосновения между костями, между костями и хрящом. Самым распространенным типом являются синовиальные. Кости развиваются по мере взросления ребенка, обеспечивая опору для всего тела. Они составляют скелет. Он включает 206 отдельных костей, состоящих из костной ткани и костных клеток. Все они располагаются в осевом (80 штук) и аппендикулярном (126 штук) скелете.

Вес костей у взрослого составляет около 17-18% от массы тела. Согласно описанию структур костной системы, основными ее элементами являются:

  1. Череп. Состоит из 22 соединенных костей, исключая только нижнюю челюсть. Функции скелета в этой части: защита мозга от повреждений, поддержка носа, глаз, рта.
  2. Позвоночник. Образован 26 позвонками. Основные функции позвоночника: защитная, амортизационная, двигательная, опорная.
  3. Грудная клетка. Включает грудину, 12 пар ребер. Они защищают грудную полость.
  4. Конечности. Сюда относятся плечи, кисти, предплечья, кости бедра, стопы и голени. Обеспечивают основную двигательную активность.

Строение мышечного скелета

Аппарат мышц тоже изучает анатомия человека. Существует даже специальный раздел – миология. Основной функцией мышц является обеспечение человека возможностью двигаться. К костям скелетной системы прикрепляется около 700 мышц. От массы тела человека они составляют около 50%. Основные виды мышц следующие:

  1. Висцеральные. Располагаются внутри органов, обеспечивают перемещение веществ.
  2. Сердечная. Находится только в сердце, необходима для перекачивания крови по телу человека.
  3. Скелетные. Эта разновидность мышечной ткани управляется человеком сознательно.

Органы сердечно-сосудистой системы человека

В состав сердечно-сосудистой системы входит сердце, кровеносные сосуды и около 5 л транспортируемой крови. Основной их функцией является перенос кислорода, гормонов, питательных веществ и клеточных отходов. Работает эта система только за счет сердца, которое, оставаясь в состоянии покоя, перекачивает по телу около 5 л крови ежеминутно. Оно продолжает работать даже ночью, когда большая часть остальных элементов организма отдыхает.

Анатомия сердца

Данный орган имеет мышечную полую структуру. Кровь в нем вливается в венозные стволы, а затем прогоняется в артериальную систему. Сердце состоит из 4 камер: 2 желудочков, 2 предсердий. Левые части выступают артериальным сердцем, а правые – венозным. Такое деление основано на находящейся в камерах крови. Сердце в анатомии человека является насосным органом, так как его функцией выступает перекачивание крови. В организме существует всего 2 круга кровообращения:

  • малый, или легочный, транспортирующий венозную кровь;
  • большой, несущий кровь, насыщенную кислородом.

Сосуды легочного круга

Малый круг кровообращение перегоняет кровь из правой части сердца по направлению к легким. Там она наполняется кислородом. Это и есть основная функция сосудов легочного круга. Затем кровь возвращается обратно, но уже в левую половину сердца. Легочный контур поддерживают правое предсердие и правый желудочек – для него они являются насосными камерами. К этому кругу кровообращения относят:

  • правую и левую легочную артерии;
  • их разветвления – артериолы, капилляры и прекапилляры;
  • венулы и вены, сливающиеся в 4 легочные вены, которые впадают в левое предсердие.

Артерии и вены большого круга кровообращения

Телесный, или большой, круг кровообращения в анатомии человека предназначен для доставки кислорода и питательных веществ ко всем тканям. Его функцией является последующее удаление из них углекислого газа с продуктами обмена. Круг начинается в левом желудочке – из аорты, несущей артериальную кровь. Далее идет разделение на:

  1. Артерии. Идут ко всем внутренностям, кроме легких и сердца. Содержат питательные вещества.
  2. Артериолы. Это мелкие артерии, несущие кровь к капиллярам.
  3. Капилляры. В них кровь отдает питательных вещества с кислородом, а взамен забирает углекислоту и продукты обмена веществ.
  4. Венулы. Это обратные сосуды, обеспечивают возвращение крови. Похожи на артериолы.
  5. Вены. Сливаются в два крупных ствола – верхнюю и нижнюю полые вены, впадающие в правое предсердие.

Анатомия строения нервной системы

Органы чувств, нервная ткань и клетки, спинной и головной мозг – вот из чего состоит нервная система. Их совокупность обеспечивает контроль тела и взаимосвязь его частей. Центральная нервная система – это центр управления, состоящий из головного и спинного мозга. Она отвечает за оценку поступающей из вне информации и принятие человеком определенных решений.

Расположение органов у человека ЦНС

Анатомия человека говорит, что основной функцией ЦНС является осуществление простых и сложных рефлексов. За них отвечают следующие важные органы:

  1. Головной мозг. Расположен в мозговом отделе черепа. Состоит из нескольких отделов и 4 сообщающихся полостей – мозговых желудочков. выполняет высшие психические функции: сознание, добровольные действия, память, планирование. Кроме того, поддерживает дыхание, частоту сокращения сердца, пищеварение и артериальное давление.
  2. Спинной мозг. Находится в позвоночном канале, представляет собой белый тяж. На передней и задней поверхности имеет продольные борозды, а в центре – спинномозговой канал. Спинной мозг состоит из белого (проводник нервных сигналов из мозга) и серого (создает рефлексы на раздражителей) вещества.
Смотрите видео о строении головного мозга человека.

Функционирование периферической нервной системы

Сюда относятся элементы нервной системы, находящиеся за пределами спинного и головного мозга. Эта часть выделяется условно. В ее состав входит следующее:

  1. Спинномозговые нервы. У каждого человека из 31 пара. Задние ветви спинномозговых нервов идут между поперечными отростками позвонков. Они иннервируют затылок, глубокие мышцы спины.
  2. Черепные нервы. Насчитывается 12 пар. Иннервируют органы зрения, слуха, обоняния, железы полости рта, зубы и кожу лица.
  3. Сенсорные рецепторы. Это специфические клетки, воспринимающие раздражение внешней среды и преобразующие его в нервные импульсы.

Анатомический атлас человека

Строение тела человека подробно описывается в анатомическом атласе. Материал в нем показывает организм как едино целое, состоящее из отдельных элементов. Много энциклопедий было написано разными учеными-медиками, изучавшими курс анатомии человека. Эти сборники содержат наглядные схемы размещения органов каждой системы. Так проще увидеть взаимосвязь между ними. В целом анатомический атлас – это подробно описанное внутреннее строение человека.

Видео

Внимание! Иформация представленная в статье носит ознакомительный характер. Материалы статьи не призывают к самостоятельному лечению. Только квалифицированный врач может поставить диагноз и дать рекомендации по лечению исходя из индивидуальных особенностей конкретного пациента.

Нашли в тексте ошибку? Выделите её, нажмите Ctrl + Enter и мы всё исправим!

Кто хочет стать миллионером? 07.10.17. Вопросы и ответы.

* * * * * * * * * *

«Кто хочет стать миллионером?»

Вопросы и ответы:

Юрий Стоянов и Игорь Золотовицкий

Несгораемая сумма: 200 000 рублей.

Вопросы:

1. Какая участь постигла теремок в одноимённой сказке?

2. К чему призывает гардемаринов припев песни в фильме Светланы Дружининой?

3. Какой кнопки не найти на пульте кабины современного лифта?

4. Какое выражение означает то же, что «идти пешком»?

5. Из чего делают строганину?

6. При каком режиме работы стиральной машины особенно важна центробежная сила?

7. Какая фраза из фильма «Волшебная лампа Алладина» стала названием альбома группы «АукцЫон»?

8. Где занимают места матросы парусника по команде «Свистать всех наверх!»?

9. Какой из четырёх портретов в фойе театра на Таганке был добавлен Любимовым по настоянию райкома партии?

10. Флаг какого государства не трёхцветный?

11. Кого с полным правом можно назвать потомственным скульптором?

12. Как называется модель человеческого тела — наглядное пособие для будущих врачей?

13. Что находилось внутри первого пасхального яйца, изготовленного Карлом Фаберже?

Правильные ответы:

1. развалился

2. не вешать нос

3. «Поехали!»

4. на своих двоих

5. из лосося

7. «В Багдаде все спокойно»

8. на верхней палубе

9. Константина Станиславского

10. Албании

11. Александра Рукавишникова

12. фантом

13. золотая курочка

Игроки не стали отвечать на 13 вопрос, а забрали выигрыш в размере 400 000 рублей.

_____________________________________

Светлана Зейналова и Тимур Соловьёв

Несгораемая сумма: 200 000 рублей.

Вопросы:

2. Куда, если верить крылатой фразе, ведёт дорога, вымощенная благими намерениями?

3. Что используют для просеивания муки?

4. Как правильно продолжить строчку Пушкина: «Он уважать себя заставил…»?

5. Что в нынешнем году появилось впервые в истории розыгрыша футбольного Кубка конфедераций?

6. В каком городе находится недостроенный храм Святого Семейства?

7. Как заканчивается строка популярной песни: «Падала листва, и метель мела…»?

8. Каким творчеством занимался Аркадий Велюров в фильме «Покровские ворота»?

9, сообщает сайт. Прибавлению чего, как считается, должно способствовать растение толстянка?

10. Что увидели парижане в 1983 году благодаря Пьеру Кардену?

11. Кто убил огромного змея Пифона?

12. Какое звание по итогам 2016 года получила купюра в 50 швейцарских франков?

13. Что сооружают из природных материалов приверженцы карго-культа в Меланезии?

Правильные ответы:

1. профиль

4. И лучше выдумать не мог

5. видеоповторы для судей

6. в Барселоне

7. Где же ты была?

8. пел куплеты

10. спектакль «Юнона и Авось»

11. Аполлон

13. взлетно-посадочные полосы

Игроки не смогли правильно ответить на 13 вопрос, но ушли с несгораемой суммой.

В этой статье можно узнать все ответы в игре "Кто хочет стать миллионером?" за 7 октября 2017 года (07.10.2017). Сначала можно посмотреть вопросы, заданные игрокам Дмитрием Дибровым, а затем и все правильные ответы в сегодняшней интеллектуальной телеигре "Кто хочет стать миллионером?" за 7.10.2017.

Вопросы первой паре игроков

Юрий Стоянов и Игорь Золотовицкий (200 000 - 400 000 рублей)

1. Какая участь постигла теремок в одноимённой сказке?
2. К чему призывает гардемаринов припев песни в фильме Светланы Дружининой?
3. Какой кнопки не найти на пульте кабины современного лифта?
4. Какое выражение означает то же, что «идти пешком»?
5. Из чего делают строганину?
6. При каком режиме работы стиральной машины особенно важна центробежная сила?
7. Какая фраза из фильма «Волшебная лампа Алладина» стала названием альбома группы «АукцЫон»?
8. Где занимают места матросы парусника по команде «Свистать всех наверх!»?
9. Какой из четырёх портретов в фойе театра на Таганке был добавлен Любимовым по настоянию райкома партии?
10. Флаг какого государства не трёхцветный?
11. Кого с полным правом можно назвать потомственным скульптором?
12. Как называется модель человеческого тела - наглядное пособие для будущих врачей?
13. Что находилось внутри первого пасхального яйца, изготовленного Карлом Фаберже?

Вопросы второй паре игроков

Светлана Зейналова и Тимур Соловьёв (200 000 - 200 000 рублей)

1. Что создают люди в социальных сетях?
2. Куда, если верить крылатой фразе, ведёт дорога, вымощенная благими намерениями?
3. Что используют для просеивания муки?
4. Как правильно продолжить строчку Пушкина: «Он уважать себя заставил…»?
5. Что в нынешнем году появилось впервые в истории розыгрыша футбольного Кубка конфедераций?
6. В каком городе находится недостроенный храм Святого Семейства?
7. Как заканчивается строка популярной песни: «Падала листва, и метель мела…»?
8. Каким творчеством занимался Аркадий Велюров в фильме «Покровские ворота»?
9. Прибавлению чего, как считается, должно способствовать растение толстянка?
10. Что увидели парижане в 1983 году благодаря Пьеру Кардену?
11. Кто убил огромного змея Пифона?
12. Какое звание по итогам 2016 года получила купюра в 50 швейцарских франков?
13. Что сооружают из природных материалов приверженцы карго-культа в Меланезии?

Ответы на вопросы первой пары игроков

  1. развалился
  2. не вешать нос
  3. "Поехали!"
  4. на своих двоих
  5. из лосося
  6. отжим
  7. "В Багдаде все спокойно"
  8. на верхней палубе
  9. Константина Станиславского
  10. Албании
  11. Александра Рукавишникова
  12. фантом
  13. золотая курочка

Ответы на вопросы второй пары игроков

  1. профиль
  2. И лучше выдумать не мог
  3. видеоповторы для судей
  4. в Барселоне
  5. Где же ты была?
  6. пел куплеты
  7. денег
  8. спектакль "Юнона и Авось"
  9. Аполлон
  10. самая красивая
  11. взлетно-посадочные полосы


Рассказать друзьям