V. Вариационные ряды, средние величины, вариабельность признака

💖 Нравится? Поделись с друзьями ссылкой
Статистический ряд распределения – это упорядоченное распределение единиц совокупности на группы по определённому варьирующему признаку.
В зависимости от признака, положенного в основу образования ряда распределения, различают атрибутивные и вариационные ряды распределения .

Наличие общего признака является основой для образования статистической совокупности, которая представляет собой результаты описания или измерения общих признаков объектов исследования.

Предметом изучения в статистике являются изменяющиеся (варьирующие) признаки или статистические признаками.

Виды статистических признаков .

Атрибутивными называют ряды распределения , построенные по качественным признакам. Атрибутивный – это признак, имеющий наименование, (например профессия: швея, учитель и т.д.).
Ряд распределения принято оформлять в виде таблиц. В табл. 2.8 приведён атрибутивный ряд распределения.
Таблица 2.8 - Распределение видов юридической помощи, оказанной адвокатами гражданам одного из регионов РФ.

Вариационный ряд – это значения признака (или интервалы значений) и их частоты.
Вариационными рядами называют ряды распределения , построенные по количественному признаку. Любой вариационный ряд состоит из двух элементов: вариантов и частот.
Вариантами считаются отдельные значения признака, которые он принимает в вариационном ряду.
Частоты – это численности отдельных вариантов или каждой группы вариационного ряда, т.е. это числа, показывающие, как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот определяет численность всей совокупности, её объём.
Частостями называются частоты, выраженные в долях единицы или в процентах к итогу. Соответственно сумма частостей равна 1 или 100 %. Вариационный ряд позволяет по фактическим данным оценить форму закона распределения.

В зависимости от характера вариации признака различают дискретные и интервальные вариационные ряды .
Пример дискретного вариационного ряда приведен в табл. 2.9.
Таблица 2.9 - Распределение семей по числу занимаемых комнат в отдельных квартирах в 1989 г. в РФ.

В первой колонке таблицы представлены варианты дискретного вариационного ряда, во второй – помещены частоты вариационного ряда, в третьей – показатели частости.

Вариационный ряд

В генеральной совокупности исследуется некоторый количественный признак. Из нее случайным образом извлекается выборка объема n , то есть число элементов выборки равно n . На первом этапе статистической обработки производят ранжирование выборки, т.е. упорядочивание чисел x 1 , x 2 , …, x n по возрастанию. Каждое наблюдаемое значение x i называется вариантой . Частота m i – это число наблюдений значения x i в выборке. Относительная частота (частость) w i – это отношение частоты m i к объему выборкиn : .
При изучении вариационного ряда также используют понятия накопленной частоты и накопленной частости. Пусть x некоторое число. Тогда количество вариантов, значения которых меньше x , называется накопленной частотой: для x i n называется накопленной частостью w i max .
Признак называется дискретно варьируемым, если его отдельные значения (варианты) отличаются друг от друга на некоторую конечную величину (обычно целое число). Вариационный ряд такого признака называется дискретным вариационным рядом.

Таблица 1. Общий вид дискретного вариационного ряда частот

Значения признака x i x 1 x 2 x n
Частоты m i m 1 m 2 m n

Признак называется непрерывно варьирующим, если его значения отличаются друг от друга на сколь угодно малую величину, т.е. признак может принимать любые значения в некотором интервале. Непрерывный вариационный ряд для такого признака называется интервальным.

Таблица 2. Общий вид интервального вариационного ряда частот

Таблица 3. Графические изображения вариационного ряда

Ряд Полигон или гистограмма Эмпирическая функция распределения
Дискретный
Интервальный
Просматривая результаты проведенных наблюдений, определяют, сколько значений вариантов попало в каждый конкретный интервал. Предполагается, что каждому интервалу принадлежит один из его концов: либо во всех случаях левые (чаще), либо во всех случаях правые, а частоты или частости показывают число вариантов, заключенных в указанных границах. Разности a i – a i +1 называются частичными интервалами. Для упрощения последующих расчетов интервальный вариационный ряд можно заменить условно дискретным. В этом случае серединное значение i -го интервала принимают за вариант x i , а соответствующую интервальную частоту m i – за частоту этого интервала.
Для графического изображения вариационных рядов наиболее часто используются полигон, гистограмма, кумулятивная кривая и эмпирическая функция распределения.

В табл. 2.3 (Группировка населения России по размеру среднедушевого дохода в апреле 1994г.) представлен интервальный вариационный ряд .
Удобно ряды распределения анализировать при помощи графического изображения, позволяющего судить и о форме распределения. Наглядное представление о характере изменения частот вариационного ряда дают полигон и гистограмма .
Полигон используется при изображении дискретных вариационных рядов .
Изобразим, например графически распределение жилого фонда по типу квартир, (табл. 2.10).
Таблица 2.10 - Распределение жилого фонда городского района по типу квартир (цифры условные).


Рис. Полигон распределения жилого фонда


На оси ординат могут наноситься не только значения частот, но и частостей вариационного ряда.
Гистограмма принимается для изображения интервального вариационного ряда . При построении гистограммы на оси абсцисс откладываются величины интервалов, а частоты изображаются прямоугольниками, построенными на соответствующих интервалах. Высота столбиков в случае равных интервалов должна быть пропорциональна частотам. Гистограмма – график, на котором ряд изображен в виде смежных друг с другом столбиков.
Изобразим графически интервальный ряд распределения, приведённый в табл. 2.11.
Таблица 2.11 - Распределение семей по размеру жилой площади, приходящейся на одного человека (цифры условные).
N п/п Группы семей по размеру жилой площади, приходящейся на одного человека Число семей с данным размером жилой площади Накопленное число семей
1 3 – 5 10 10
2 5 – 7 20 30
3 7 – 9 40 70
4 9 – 11 30 100
5 11 – 13 15 115
ВСЕГО 115 ----


Рис. 2.2. Гистограмма распределения семей по размеру жилой площади, приходящейся на одного человека


Используя данные накопленного ряда (табл. 2.11), построим кумуляту распределения.


Рис. 2.3. Кумулята распределения семей по размеру жилой площади, приходящейся на одного человека


Изображение вариационного ряда в виде кумуляты особенно эффективно для вариационных рядов, частоты которых выражены в долях или процентах к сумме частот ряда.
Если при графическом изображении вариационного ряда в виде кумуляты оси поменять, то мы получим огиву . На рис. 2.4 приведена огива, построенная на основе данных табл. 2.11.
Гистограмма может быть преобразована в полигон распределения, если найти середины сторон прямоугольников и затем эти точки соединить прямыми линиями. Полученный полигон распределения изображён на рис. 2.2 пунктирной линией.
При построении гистограммы распределения вариационного ряда с неравными интервалами по оси ординат наносят не частоты, а плотность распределения признака в соответствующих интервалах.
Плотность распределения – это частота, рассчитанная на единицу ширины интервала, т.е. сколько единиц в каждой группе приходится на единицу величины интервала. Пример расчета плотности распределения представлен в табл. 2.12.
Таблица 2.12 - Распределение предприятий по числу занятых (цифры условные)
N п/п Группы предприятий по числу занятых, чел. Число предприятий Величина интервала, чел. Плотность распределения
А 1 2 3=1/2
1 До 20 15 20 0,75
2 20 – 80 27 60 0,25
3 80 – 150 35 70 0,5
4 150 – 300 60 150 0,4
5 300 – 500 10 200 0,05
ВСЕГО 147 ---- ----

Для графического изображения вариационных рядов может также использоваться кумулятивная кривая . При помощи кумуляты (кривой сумм) изображается ряд накопленных частот. Накопленные частоты определяются путём последовательно суммирования частот по группам и показывают, сколько единиц совокупности имеют значения признака не больше, чем рассматриваемое значение.


Рис. 2.4. Огива распределения семей по размеру жилой площади, приходящейся на одного человека

При построении кумуляты интервального вариационного ряда по оси абсцисс откладываются варианты ряда, а по оси ординат накопленные частоты.

Совокупность значений изученного в данном эксперименте или наблюдении параметра, проранжированных по величине (возрастания или убывания) называется вариационным рядом.

Предположим, что мы измерили артериальное давление у десяти пациентов с целью получить верхний порог АД: систолическое давление, т.е. только одно число.

Представим, что серия наблюдений (статистическая совокупность) артериального систолического давления в 10-ти наблюдениях имеет следующий вид (табл. 1):

Таблица 1

Составляющие вариационного ряда называются вариантами. Варианты представляют собой числовое значение изучаемого признака.

Построение из статистической совокупности наблюдений вариационного ряда - только первый шаг к осмыслению особенностей всей совокупности. Далее необходимо определить средний уровень изучаемого количественного признака (средний уровень белка крови, средний вес пациентов, среднее время наступления наркоза и т.д.)

Средний уровень измеряют с помощью критериев, которые носят название средних величин. Средняя величина - обобщающая числовая характеристика качественно однородных величин, характеризующая одним числом всю статистическую совокупность по одному признаку. Средняя величина выражает то общее, что характерно для признака в данной совокупности наблюдений.

Общеупотребительными являются три вида средних величин: мода (), медиана () и среднеарифметическая величина ().

Для определения любой средней величины необходимо использовать результаты индивидуальных наблюдений, записав их в виде вариационного ряда (табл. 2).

Мода - значение, наиболее часто встречающееся в серии наблюдений. В нашем примере мода = 120. Если в вариационном ряду нет повторяющихся значений, то говорят, что мода отсутствует. Если несколько значений повторяются одинаковое количество раз, то в качестве моды берут наименьшее из них.

Медиана - значение, делящее распределение на две равные части, центральное или срединное значение серии наблюдений, упорядоченных по возрастанию или убыванию. Так, если в вариационном ряду 5 значений, то его медиана равна третьему члену вариационного ряда, если в ряду четное количество членов, то медиана представляет собой среднее арифметическое двух его центральных наблюдений, т.е. если в ряду 10 наблюдений, то медиана равна среднему арифметическому 5 и 6 наблюдения. В нашем примере.

Заметим важную особенность моды и медианы: на их величины не оказывают влияние числовые значения крайних вариант.

Средняя арифметическая величина рассчитывается по формуле:

где - наблюденная величина в -том наблюдении, а - число наблюдений. Для нашего случая.

Средняя арифметическая величина обладает тремя свойствами:

Средняя занимает серединное положение в вариационном ряду. В строго симметричном ряду.

Средняя является обобщающей величиной и за средней не видны случайные колебания, различия в индивидуальных данных. Она отражает то типичное, что характерно для всей совокупности.

Сумма отклонений всех вариант от средней равна нулю: . Отклонение вариант от средней обозначается.

Вариационный ряд состоит из вариант и соответствующих им частот. Из десяти полученных значений цифра 120 встретилась 6 раз, 115 - 3 раза, 125 - 1 раз. Частота () - абсолютная численность отдельных вариант в совокупности, указывающая, сколько раз встречается данная варианта в вариационном ряду.

Вариационный ряд может быть простым (частоты = 1) или сгруппированным укороченным, по 3-5 вариант. Простой ряд используется при малом числе наблюдений (), сгруппированный - при большом числе наблюдений ().

Вариационными называют ряды распределения, построенные по количественному признаку. Значения количественных признаков у отдельных единиц совокупности непостоянны, более или менее различаются между собой.

Вариация - колеблемость, изменяемость величины признака у единиц совокупности. Отдельные числовые значения признака, встречающиеся в изучаемой совокупности, называют вариантами значений. Недостаточность средней величины для полной характеристики совокупности заставляет дополнять средние величины показателями, позволяющими оценить типичность этих средних путем измерения колеблемости (вариации) изучаемого признака.

Наличие вариации обусловлено влиянием большого числа факторов на формирование уровня признака. Эти факторы действуют с неодинаковой силой и в разных направлениях. Для описания меры изменчивости признаков используют показатели вариации.

Задачи статистического изучения вариации:

  • 1) изучение характера и степени вариации признаков у отдельных единиц совокупности;
  • 2) определение роли отдельных факторов или их групп в вариации тех или иных признаков совокупности.

В статистике применяются специальные методы исследования вариации, основанные на использовании системы показателей, с помощью которых измеряется вариация.

Исследование вариаций имеет важное значение. Измерение вариаций необходимо при проведении выборочного наблюдения, корреляционном и дисперсионном анализе и т. д. Ермолаев О.Ю. Математическая статистика для психологов: Учебник [Текст]/ О.Ю. Ермолаев. - М.: Изд-во Флинта Московского психолого-социального института, 2012. - 335с.

По степени вариации можно судить об однородности совокупности, об устойчивости отдельных значений признаков и типичности средней. На их основе разрабатываются показатели тесноты связи между признаками, показатели оценки точности выборочного наблюдения.

Различают вариацию в пространстве и вариацию во времени.

Под вариацией в пространстве понимают колеблемость значений признака у единиц совокупности, представляющих отдельные территории. Под вариацией во времени подразумевают изменение значений признака в различные периоды времени.

Для изучения вариации в рядах распределения проводят расположение всех вариантов значений признака в возрастающем или убывающем порядке. Этот процесс называют ранжированием ряда.

Самыми простыми признаками вариации являются минимум и максимум - самое наименьшее и наибольшее значение признака в совокупности. Число повторений отдельных вариантов значений признаков называют частотой повторения (fi). Частоты удобно заменять частостями - wi. Частость - относительный показатель частоты, который может быть выражен в долях единицы или процентах и позволяет сопоставлять вариационные ряды с различным числом наблюдений. Выражается формулой:

где Хmax, Хmin - максимальное и минимальное значения признака в совокупности; n - число групп.

Для измерения вариации признака применяются различные абсолютные и относительные показатели. К абсолютным показателям вариации относятся размах вариации, среднее линейное отклонение, дисперсия, среднее квадратическое отклонение. К относительным показателям колеблемости относят коэффициент осцилляции, относительное линейное отклонение, коэффициент вариации.

Пример нахождения вариационного ряда

Задание. По данной выборке:

  • а) Найти вариационный ряд;
  • б) Построить функцию распределения;

№=42. Элементы выборки:

1 5 1 8 1 3 9 4 7 3 7 8 7 3 2 3 5 3 8 3 5 2 8 3 7 9 5 8 8 1 2 2 5 1 6 1 7 6 7 7 6 2

Решение.

  • а) построение ранжированного вариационного ряда:
    • 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 5 5 5 5 5 6 6 6 7 7 7 7 7 7 7 8 8 8 8 8 8 9 9
  • б) построение дискретного вариационного ряда.

Вычислим число групп в вариационном ряду пользуясь формулой Стерджесса:

Примем число групп равным 7.

Зная число групп, рассчитаем величину интервала:

Для удобства построения таблицы примем число групп равным 8, интервал составит 1.

Рис. 1 Объем продаж магазином товара за определенный промежуток времени

(определение вариационного ряда; составляющие вариационного ряда; три формы вариационного ряда; целесообразность построения интервального ряда; выводы, которые можно сделать по построенному ряду)

Вариационным рядом называется последовательность всех элементов выборки, расположенных в неубывающем порядке. Одинаковые элементы повторяются

Вариационные – это ряды, построенные по количественному признаку.

Вариационные ряды распределения состоят из двух элементов: вариантов и частот:

Варианты – это числовые значения количественного признака в вариационном ряду распределения. Они могут быть положительными и отрицательными, абсолютными и относительными. Так, при группировке предприятий по результатам хозяйственной деятельности варианты положительные – это прибыль, а отрицательные числа – это убыток.

Частоты – это численности отдельных вариантов или каждой группы вариационного ряда, т.е. это числа, показывающие, как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот называется объемом совокупности и определяется числом элементов всей совокупности.

Частости – это частоты, выраженные в виде относительных величин (долях единиц или процентах). Сумма частостей равна единице или 100%. Замена частот частостями позволяет сопоставлять вариационные ряды с разным числом наблюдений.

Выделяют три формы вариационного ряда: ранжированный ряд, дискретный ряд и интервальный ряд.

Ранжированный ряд - это распределение отдельных единиц совокупности в порядке возрастания или убывания исследуемого признака. Ранжирование позволяет легко разделить количественные данные по группам, сразу обнаружить наименьшее и наибольшее значения признака, выделить значения, которые чаще всего повторяются.

Другие формы вариационного ряда - групповые таблицы, составленные по характеру вариации значений изучаемого признака. По характеру вариации различают дискретные (прерывные) и непрерывные признаки.

Дискретный ряд - это такой вариационный ряд, в основу построения которого положены признаки с прерывным изменением (дискретные признаки). К последним можно отнести тарифный разряд, количество детей в семье, число работников на предприятии и т.д. Эти признаки могут принимать только конечное число определенных значений.

Дискретный вариационный ряд представляет таблицу, которая состоит из двух граф. В первой графе указывается конкретное значение признака, а во второй - число единиц совокупности с определенным значением признака.

Если признак имеет непрерывное изменение (размер дохода, стаж работы, стоимость основных фондов предприятия и т.д., которые в определенных границах могут принимать любые значения), то для этого признака нужно строить интервальный вариационный ряд.



Групповая таблица здесь также имеет две графы. В первой указывается значение признака в интервале «от - до» (варианты), во второй - число единиц, входящих в интервал (частота).

Частота (частота повторения) - число повторений отдельного варианта значений признака, обозначается fi , а сумма частот, равная объему исследуемой совокупности, обозначается

Где k - число вариантов значений признака

Очень часто таблица дополняется графой, в которой подсчитываются накопленные частоты S, которые показывают, какое количество единиц совокупности имеет значение признака не большее, чем данное значение.

Дискретный вариационный ряд распределения – это ряд, в котором группы составлены по признаку, изменяющемуся дискретно и принимающему только целые значения.

Интервальный вариационный ряд распределения – это ряд, в котором группировочный признак, составляющий основание группировки, может принимать в определенном интервале любые значения, в том числе и дробные.

Интервальным вариационным рядом называется упорядоченная совокупность интервалов варьирования значений случайной величины с соответствующими частотами или частостями попаданий в каждый из них значений величины.

Интервальный ряд распределения целесообразно строить, прежде всего, при непрерывной вариации признака, а также, если дискретная вариация проявляется в широких пределах, т.е. число вариантов дискретного признака достаточно велико.

По этому ряду уже можно сделать несколько выводов. Например, средний элемент вариационного ряда (медиана) может быть оценкой наиболее вероятного результата измерения. Первый и последний элемент вариационного ряда (т.е. минимальный и максимальный элемент выборки) показывают разброс элементов выборки. Иногда если первый или последний элемент сильно отличаются от остальных элементов выборки, то их исключают из результатов измерений, считая, что эти значения получены в результате какого-то грубого сбоя, например, техники.

Понятие вариационного ряда. Первым шагом систематизации материалов статистического наблюдения является подсчет числа единиц, обладающих тем или иным признаком. Расположив единицы в порядке возрастания или убывания их количественного признака и подсчитав число единиц с конкретным значением признака, получаем вариационный ряд. Вариационный ряд характеризует распределение единиц определенной статистической совокупности по какому–либо количественному признаку.

Вариационный ряд представляет собой две колонки, в левой колонке приводятся значения варьирующего признака, именуемые вариантами и обозначаемые (x), а в правой – абсолютные числа, показывающие, сколько раз встречается каждый вариант. Показатели этой колонки называются частотами и обозначаются (f).

Схематично вариационный ряд можно представить в виде табл.5.1:

Таблица 5.1

Вид вариационного ряда

Варианты (x)

Частоты (f)

В правой колонке могут использоваться и относительные показатели, характеризующие долю частоты отдельных вариантов в общей сумме частот. Эти относительные показатели именуют частостями и условно обозначают через , т.е. . Сумма всех частостей равна единице. Частости могут быть выражены и в процентах, и тогда их сумма будет равна 100%.

Варьирующие признаки могут носить разный характер. Варианты одних признаков выражаются в целых числах, например, число комнат в квартире, число изданных книг и т.д. Эти признаки именуют прерывными, или дискретными. Варианты других признаков могут принимать любые значения в определенных пределах, как, например, выполнение плановых заданий, заработная плата и др. Эти признаки называют непрерывными.

Дискретный вариационный ряд. Если варианты вариационного ряда выражены в виде дискретных величин, то такой вариационный ряд называют дискретным, его внешний вид представлен в табл. 5.2:

Таблица 5.2

Распределение студентов по оценкам, полученным на экзамене

Оценки (х)

Количество студентов (f)

В % к итогу ()

Характер распределения в дискретных рядах изображается графически в виде полигона распределения, рис.5.1.

Рис. 5.1. Распределение студентов по оценкам, полученным на экзамене.

Интервальный вариационный ряд. Для непрерывных признаков вариационные ряды строятся интервальные, т.е. значения признака в них выражаются в виде интервалов «от и до». При этом минимальное значение признака в таком интервале именуют нижней границей интервала, а максимальное – верхней границей интервала.

Интервальные вариационные ряды строят как для прерывных признаков (дискретных), так и для варьирующих в большом диапазоне. Интервальные ряды могут быть с равными и неравными интервалами. В экономической практике в большинстве своем применяются неравные интервалы, прогрессивно возрастающие или убывающие. Такая необходимость возникает особенно в тех случаях, когда колеблемость признака осуществляется неравномерно и в больших пределах.

Рассмотрим вид интервального ряда с равными интервалами, табл. 5.3:

Таблица 5.3

Распределение рабочих по выработке

Выработка, т.р. (х)

Число рабочих (f)

Кумулятивная частота (f´)

Интервальный ряд распределения графически изображается в виде гистограммы, рис.5.2.

Рис.5.2. Распределение рабочих по выработке

Накопленная (кумулятивная) частота. В практике возникает потребность в преобразовании рядов распределения в кумулятивные ряды, строящиеся по накопленным частотам. С их помощью можно определить структурные средние, которые облегчают анализ данных ряда распределения.

Накопленные частоты определяются путем последовательного прибавления к частотам (или частостям) первой группы этих показателей последующих групп ряда распределения. Для иллюстрации рядов распределения используются кумуляты и огивы. Для их построения на оси абсцисс отмечаются значения дискретного признака (или концы интервалов), а на оси ординат – нарастающие итоги частот (кумулята), рис.5.3.

Рис. 5.3. Кумулята распределения рабочих по выработке

Если шкалы частот и вариантов поменять местами, т.е. на оси абсцисс отражать накопленные частоты, а на оси ординат – значения вариантов, то кривая, характеризующая изменение частот от группы к группе, будет носит название огивы распределения, рис.5.4.

Рис. 5.4. Огива распределения рабочих по выработке

Вариационные ряды с равными интервалами обеспечивают одно из важнейших требований, предъявляемых к статистическим рядам распределения, обеспечение сравнимости их во времени и пространстве.

Плотность распределения. Однако частоты отдельных неравных интервалов в названных рядах непосредственно не сопоставимы. В подобных случаях для обеспечения необходимой сравнимости исчисляют плотность распределения, т.е. определяют, сколько единиц в каждой группе приходится на единицу величины интервала.

При построении графика распределения вариационного ряда с неравными интервалами высоту прямоугольников определяют пропорционально не частотам, а показателям плотности распределения значений изучаемого признака в соответствующих интервалах.

Составление вариационного ряда и его графическое изображение является первым шагом обработки исходных данных и первой ступенью анализа изучаемой совокупности. Следующим шагом в анализе вариационных рядов является определение основных обобщающих показателей, именуемых характеристиками ряда. Эти характеристики должны дать представление о среднем значении признака у единиц совокупности.

Средняя величина . Средняя величина представляет собой обобщенную характеристику изучаемого признака в исследуемой совокупности, отражающая ее типический уровень в расчете на единицу совокупности в конкретных условиях места и времени.

Средняя величина всегда именованная, имеет ту же размерность, что и признак у отдельных единиц совокупности.

Перед вычислением средних величин необходимо произвести группировку единиц исследуемой совокупности, выделив качественно однородные группы.

Средняя, рассчитанная по совокупности в целом называется общей средней, а для каждой группы – групповыми средними.

Существуют две разновидности средних величин: степенные (средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратическая); структурные (мода, медиана, квартили, децили).

Выбор средней для расчета зависит от цели.

Виды степенных средних и методы их расчета. В практике статистической обработки собранного материала возникают различные задачи, для решения которых требуются различные средние.

Математическая статистика выводит различные средние из формул степенной средней:

где средняя величина; x – отдельные варианты (значения признаков); z – показатель степени (при z = 1 – средняя арифметическая, z = 0 средняя геометрическая, z = - 1 – средняя гармоническая, z = 2 – средняя квадратическая).

Однако вопрос о том, какой вид средней необходимо применить в каждом отдельном случае, разрешается путем конкретного анализа изучаемой совокупности.

Наиболее часто встречающимся в статистике видом средних величин является средняя арифметическая . Она исчисляется в тех случаях, когда объем осредняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности.

В зависимости от характера исходных данных средняя арифметическая определяется различными способами:

Если данные несгруппированные, то расчет ведется по формуле простой средней величины

Расчет средней арифметической в дискретном ряду происходит по формуле 3.4.

Расчет средней арифметической в интервальном ряду. В интервальном вариационном ряду, где за величину признака в каждой группе условно принимается середина интервала, средняя арифметическая может отличаться от средней, рассчитанной по несгруппированным данным. Причем, чем больше величина интервала в группах, тем больше возможные отклонения средней, вычисленной по сгруппированным данным, от средней, рассчитанной по несгруппированным данным.

При расчете средней по интервальному вариационному ряду для выполнения необходимых вычислений от интервалов переходят к их серединам. А затем рассчитывают среднюю величину по формуле средней арифметической взвешенной.

Свойства средней арифметической. Средняя арифметическая обладает некоторыми свойствами, которые позволяют упрощать вычисления, рассмотрим их.

1. Средняя арифметическая из постоянных чисел равна этому постоянному числу.

Если х = а. Тогда .

2. Если веса всех вариантов пропорционально изменить, т.е. увеличить или уменьшить в одно и то же число раз, то средняя арифметическая нового ряда от этого не изменится.

Если все веса f уменьшить в k раз, то .

3. Сумма положительных и отрицательных отклонений отдельных вариантов от средней, умноженных на веса, равна нулю, т.е.

Если , то . Отсюда .

Если все варианты уменьшить или увеличить на какое- либо число, то средняя арифметическая нового ряда уменьшится или увеличится на столько же.

Уменьшим все варианты x на a , т.е. x ´ = x a.

Тогда

Среднюю арифметическую первоначального ряда можно получить, прибавляя к уменьшенной средней ранее вычтенное из вариантов числа a , т.е. .

5. Если все варианты уменьшить или увеличить в k раз, то средняя арифметическая нового ряда уменьшится или увеличится во столько же, т.е. в k раз.

Пусть , тогда .

Отсюда , т.е. для получения средней первоначального ряда среднюю арифметическую нового ряда (с уменьшенными вариантами) надо увеличить в k раз.

Средняя гармоническая. Средняя гармоническая это величина обратная средней арифметической. Ее используют, когда статистическая информация не содержит частот по отдельным вариантам совокупности, а представлена как их произведение (М= xf). Средняя гармоническая будет рассчитываться по формуле 3.5

Практическое применение средней гармонической – для расчета некоторых индексов, в частности, индекса цен.

Средняя геометрическая. При применении средней геометрической индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики. Средняя характеризует, таким образом, средний коэффициент роста.

Средняя геометрическая величина используется также для определения равноудаленной величины от максимального и минимального значений признака. Например, страховая компания заключает договоры на оказание услуг автострахования. В зависимости конкретного страхового случая страховая выплата может колебаться от 10000 до 100000 долл. в год. Средняя сумма выплат по страховке составит долл.

Средняя геометрическая это величина, используемая как средняя из отношений или в рядах распределения, представленных в виде геометрической прогрессии, когда z = 0. Этой средней удобно пользоваться, когда уделяется внимание не абсолютным разностям, а отношениям двух чисел.

Формулы для расчета следующие

где – варианты осредняемого признака; – произведение вариантов; f – частота вариантов.

Средняя геометрическая используется в расчетах среднегодовых темпов роста.

Средняя квадратическая. Формула средней квадратической используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения. Так, при расчете показателей вариации среднюю вычисляют из квадратов отклонений индивидуальных значений признака от средней арифметической величины.

Средняя квадратическая величина рассчитывается по формуле

В экономических исследованиях средняя квадратическая в измененном виде широко используется при расчете показателей вариации признака, таких как дисперсия, среднее квадратическое отклонение.

Правило мажорантности. Между степенными средними существует следующая зависимость – чем больше показатель степени, тем больше значение средней, табл.5.4:

Таблица 5.4

Соотношение между средними величинами

Значение z

Соотношение между средними

Это соотношение называется правилом мажорантности.

Структурные средние величины. Для характеристики структуры совокупности применяются особые показатели, которые можно назвать структурными средними. К таким показателям относятся мода, медиана, квартили и децили.

Мода. Модой (Мо) называется наиболее часто встречающееся значение признака у единиц совокупности. Модой называется то значение признака, которое соответствует максимальной точке теоретической кривой распределения.

Мода широко используется в коммерческой практике при изучении покупательского спроса (при определении размеров одежды и обуви, которые пользуются широким спросом), регистрации цен. Мод в совокупности может быть несколько.

Расчет моды в дискретном ряду. В дискретном ряду мода – это варианта с наибольшей частотой. Рассмотрим нахождение моды в дискретном ряду.

Расчет моды в интервальном ряду. В интервальном вариационном ряду модой приближенно считают центральный вариант модального интервала, т.е. того интервала, который имеет наибольшую частоту (частость). В пределах интервала надо найти то значение признака, которое является модой. Для интервального ряда мода будет определяться формулой

где – нижняя граница модального интервала; – величина модального интервала; – частота, соответствующая модальному интервалу; – частота, предшествующая модальному интервалу; – частота интервала, следующего за модальным.

Медиана. Медианой () называется значение признака у средней единицы ранжированного ряда. Ранжированный ряд – это ряд, у которого значения признака записаны в порядке возрастания или убывания. Или медиана это величина, которая делит численность упорядоченного вариационного ряда на две равные части: одна часть имеет значение варьирующего признака меньшие, чем средний вариант, а другая – большие.

Чтобы найти медиану, сначала определяется ее порядковый номер. Для этого при нечетном числе единиц к сумме всех частот прибавляется единица и все делится на два. При четном числе единиц медиана отыскивается как значение признака у единицы, порядковый номер который определяется по общей сумме частот, деленной на два. Зная порядковый номер медианы, легко по накопленным частотам найти ее значение.

Расчет медианы в дискретном ряду. По данным выборочного обследования получены данные о распределении семей по числу детей, табл. 5.5. Для определения медианы сначала определим ее порядковый номер

В этих семьях количество детей равно 2, следовательно, = 2. Таким образом, в 50% семей число детей не превышает 2.

–частота накопленная, предшествующая медианному интервалу;

С одной стороны, это весьма положительное свойство т.к. в этом случае учитывается действие всех причин, воздействующих на все единицы изучаемой совокупности. С другой стороны, даже одно наблюдение, попавшее в исходные данные случайно, может существенным образом исказить представление об уровне развития изучаемого признака в рассматриваемой совокупности (особенно в коротких рядах).

Квартили и децили. По аналогии с нахождением медианы в вариационных рядах можно отыскать значение признака у любой по порядку единицы ранжированного ряда. Так, в частности, можно найти значение признака у единиц, делящих ряд на 4 равные части, на 10 и т.п.

Квартили. Варианты, которые делят ранжированный ряд на четыре равные части, называют квартилями.

При этом различают: нижний (или первый) квартиль (Q1) – значение признака у единицы ранжированного ряда, делящей совокупность в соотношении ¼ к ¾ и верхний (или третий) квартиль(Q3) – значение признака у единицы ранжированного ряда, делящий совокупность в соотношении ¾ к ¼.

– частоты квартильных интервалов (нижнего и верхнего)

Интервалы, в которых содержатся Q1 и Q3 определяют по накопленным частотам (или частостям).

Децили. Кроме квартилей рассчитывают децили – варианты, делящие ранжированный ряд на 10 равных частей.

Обозначаются они через D, первый дециль D1 делит ряд в соотношении 1/10 и 9/10, второй D2 – 2/10 и 8/10 и т.д. Вычисляются они по той же схеме, что и медиана и квартили.

И медиана, и квартили, и децили принадлежат к так называемым порядковым статистикам, под которым понимают вариант, занимающий определенное порядковое место в ранжированном ряду.



Рассказать друзьям