История хакасии с древнейших времен до 1917 г м 1993. Территория хакасии и ее население в древнейшие времена

💖 Нравится? Поделись с друзьями ссылкой

В металлургии известны два основных способа получения меди: пирометаллургический (плавка) и гидрометаллургический (выщелачивание). Сульфидные руды обогащают методом флотации и полученный концентрат подвергают пирометаллургической переработке, а окисленные руды перерабатывают гидрометаллургическим способом (кучное и подземное выщелачивание).

выплавка штейна (химическое обогащение).

Наиболее целесообразным способом освободится от основного количества пустой породы оказалась плавка медных концентратов с получением 2-х расплавов – штейна , содержащего сульфиды меди и железа (Cu 2 S, FeS) и шлака, состоящего из оксидов SiO 2 , Al 2 O 3 , CaO. Благодаря существенному различию по плотности (у штейна 4,8-5,3, а у шлака – около 2,8-3,2 г/см 3), происходит практически полное разделение штейна и шлака. Возможность концентрации меди в штейне обусловливается следующими обстоятельствами:

1. Медь из всех тяжелых металлов, за исключением марганца, обладает наибольшим сродством к сере. В следствие этого, она в первую очередь связывает серу, независимо от того, в каких соединениях медь находится в руде, при этом образуется химическое соединение Cu 2 S, устойчивое при высоких температурах.

2. Железо, обладая большим сродством к кислороду, чем медь, легко окисляется и шлакуется кремнекислотой.

3. Оставшаяся после связывания всей меди сера соединяется с железом, с которым образует FeS – соединение, устойчивое при высоких температурах.

4. Cu 2 S и FeS легко растворяются одно в другом в любых пропорциях, образуя штейн.

5. Штейн почти не растворяется в силикатных шлаках, что дает возможность разделить отстаиванием расплавленный штейн и шлак.

Для получения хороших результатов плавки “на штейн” требуется определенное содержание в рудном материале серы, соответствующее примерно стехиометрическому соотношению в молекулах Cu 2 S и FeS. Медные концентраты, в которых концентрация серы превышает оптимальную, перед плавкой подвергаются окислительному обжигу для удаления избытка серы.

Обжиг - этопирометаллургический процесс, проводимый в интервале температур 600-1200 о С с целью изменения химического и фазового состава перерабатываемого сырья. В металлургии меди наибольшее распространение получили окислительный и сульфатизирующий виды обжига.

Цель окислительного обжига – частичное удаление из обжигаемых материалов серы и перевод сульфидов железа в легкошлакуемые при последующей плавке оксиды. Предварительный обжиг высокосернистых руд и концентратов позволяет получать при последующей плавке относительно более богатый по содержанию меди штейн.

Сульфатизирующий обжиг применяют в гидрометаллургии меди для перевода извлекаемых металлов в водорастворимые сульфаты, а железа – в нерастворимые в воде оксиды. В общем виде окисление сульфидов при обжиге может быть выражено следующими основными реакциями:


2MeS+3O 2 ->2MeO+2SO 2

MeS+2O 2 ->MeSO 4

MeS+O 2 ->Me+SO 2

Обжиг медных руд и концентратов осуществляется в кипящем слое. Преимущество обжига в кипящем слое заключается в простоте конструкции печей, высокой производительности, возможности эффективного использования отходящих газов для производства серной кислоты, возможности полной автоматизации и механизации процесса.

Принцип обжига в кипящем слое состоит в следующем: если через слой сыпучего материала продувать снизу какой-либо газ, этот слой при определенных параметрах дутья будет разрыхляться до такого состояния, что приобретает основные свойства жидкости – подвижность, способность перемешиваться, принимать форму сосуда в который она помещена.

Введение............................................................................................................... 2

Глава 1 Свойства меди........................................................................................ 4

Глава 2 Сырье для получения меди.................................................................... 6

Глава 3 Пирометаллургический способ производства меди............................. 7

1. Поготовка руд к плавке.................................................................................... 7

2. Выплавка медного штейна............................................................................... 8

3. Конвертирование медного штейна................................................................ 11

4. Рафинирование меди...................................................................................... 13

Заключение......................................................................................................... 13

Список литературы............................................................................................ 14

Приложение........................................................................................................ 15

ВВЕДЕНИЕ

Разделение металлов на черные и цветные является условным. Обычно к черным металлам относят железо, марганец и хром, а остальные металлы к цветным. Термин цветные металлы не следует понимать буквально. Фактически существует лишь два цветных металла: розовая медь и желтое золото, а в

ВВЕДЕНИЕ


Медь (лат. Cuprum) - химический элемент. Один из семи металлов, известных с глубокой древности. По некоторым археологическим данным - медь была хорошо известна египтянам еще за 4000 лет до Р. Хр. Знакомство человечества с медью относится к более ранней эпохе, чем с железом; это объясняется с одной стороны более частым нахождением меди в свободном состаянии на поверхности земли, а с другой - сравнительной легкостью получения ее из соединений. Древняя Греция и Рим получали медь с острова Кипра (Cyprum), откуда и название ее Cuprum. Особенно важна медь для электротехники.

По электропроводности медь занимает второе место среди всех металлов, после серебра. Однако в наши дни во всем мире электрические провода, на которые раньше уходила почти половина выплавляемой меди, все чаще делают из алюминия. Он хуже проводит ток, но легче и доступнее. Медь же, как и многие другие цветные металлы, становится все дефицитнее. Если в 19 в. медь добывалась из руд, где содержалось 6-9% этого элемента, то сейчас 5%-ные медные руды считаются очень богатыми, а промышленность многих стран перерабатывает руды, в которых всего 0,5% меди.

Медь входит в число жизненно важных микроэлементов. Она участвует в процессе фотосинтеза и усвоении растениями азота, способствует синтезу сахара, белков, крахмала, витаминов. Чаще всего медь вносят в почву в виде пятиводного сульфата - медного купороса. В значительных количествах он ядовит, как и многие другие соединения меди, особенно для низших организмов. В малых же дозах медь совершенно необходима всему живому.

Таким образом, разделение металлов на черные и цветные является условным. Обычно к черным металлам относят железо, марганец и хром, а остальные металлы к цветным. Термин цветные металлы не следует понимать буквально. Фактически существует лишь два цветных металла: розовая медь и желтое золото, а в отношении же остальных металлов можно говорить не об их цвете, а об их различных оттенках, чаще всего серебристо-серого или красного тонов.

Также условно цветные металлы можно разделить на четыре группы:

1 Тяжелые металлы – Cu, Ni, Pb, Zn, Sn;

2 Легкие металлы – Al, Mg, Ca, K, Na, Ba, Be, Li;

3 Благородные металлы - Au, Ag, Pt и ее природные спутники

4 Редкие металлы:

Тугоплавкие

Радиоактивные

Редкоземельные


СВОЙСТВА МЕДИ


Медь - химический элемент I группы периодической системы Менделеева; атомный номер 29, атомная масса 63,546. Температура плавления- 1083° C; температура кипения - 2595° C; плотность - 8,98 г/см 3 . По геохимической классификации В.М. Гольдшмидта, медь относится к халькофильным элементам с высоким сродством к S, Se, Te, занимающим восходящие части на кривой атомных объемов; они сосредоточены в нижней мантии, образуют сульфиднооксидную оболочку.

Вернадским в первой половине 1930 г были проведены исследования изменения изотопного состава воды, входящего в состав разных минералов, и опыты по разделению изотопов под влиянием биогеохимических процессов, что и было подтверждено последующими тщательными исследованиями. Как элемент нечетный состоит из двух нечетных изотопов 63 и 65 На долю изотопа Cu (63) приходится 69,09%, процентное содержание изотопа Cu (65) - 30,91%. В соединениях медь проявляет валентность +1 и +2, известны также немногочисленные соединения трехвалентной меди.

К валентности 1 относятся лишь глубинные соединения, первичные сульфиды и минерал куприт - Cu2O. Все остальные минералы, около сотни отвечают валентности два. Радиус одновалентной меди +0.96, этому отвечает и эк - 0,70. Величина атомного радиуса двухвалентной меди - 1,28; ионного радиуса 0,80.

Очень интересна величена потенциалов ионизации: для одного электрона - 7,69, для двух - 20,2. Обе цифры очень велики, особенно вторая, показывающая большую трудность отрыва наружных электронов. Одновалентная медь является равноквантовой и потому ведет к бесцветным солям и слабо окрашенным комплексам, тогда как разноквантовя двух валентная медь характеризуется окрашенностью солей в соединении с водой.

Медь - металл сравнительно мало активный. В сухом воздухе и кислороде при нормальных условиях медь не окисляется. Она достаточно легко вступает в реакции с галогенами, серой, селеном. А вот с водородом, углеродом и азотом медь не взаимодействует даже при высоких температурах. Кислоты, не обладающие окислительными свойствами, на медь не действуют.

Электроотрицательность атомов - способность при вступлении в соединения притягивать электроны. Электроотрицательность Cu 2+ - 984 кДЖ/моль, Cu + - 753 кДж/моль. Элементы с резко различной ЭО образуют ионную связь, а элементы с близкой ЭО - ковалентную. Сульфиды тяжелых металлов имеют промежуточную связь, с большей долей ковалентной связи (ЭО у S-1571, Cu-984, Pb-733). Медь является амфотерным элементом - образует в земной коре катионы и анионы.

Медь входит более чем в 198 минералов, из которых для промышленности важны только 17, преимущественно сульфидов, фосфатов, силикатов, карбонатов, сульфатов. Главными рудными минералами являются халькопирит CuFeS 2 , ковеллин CuS, борнит Cu 5 FeS 4 , халькозин Cu 2 S.

Окислы: тенорит, куприт. Карбонаты: малахит, азурит. Сульфаты: халькантит, брошантит. Сульфиды: ковеллин, халькозин, халькопирит, борнит.

Чистая медь - тягучий, вязкий металл красного, в изломе розового цвета, в очень тонких слоях на просвет медь выглядит зеленовато-голубой. Эти же цвета, характерны и для многих соединений меди, как в твердом состоянии, так и в растворах.

Понижение окраски при повышении валентности видно из следующих двух примеров:

CuCl - белый, Cu 2 O - красный, CuCl 2 +H 2 O - голубой, CuO - черный

Карбонаты характеризуются синим и зеленым цветом при условии содержания воды, чем намечается интересный практический признак для поисков.

Практическое значение имеют: самородная медь, сульфиды, сульфосоли и карбонаты (силикаты).


СЫРЬЕ ДЛЯ ПОЛУЧЕНИЯ МЕДИ


Для получения меди применяют медные руды, а также отходы меди и ее сплавов. В рудах содержится 1-6% меди.

В рудах медь обычно находится в виде сернистых соединений (медный колчедан или халькопирит CuFeS 2 , халькозин Cu 2 S, ковелин CuS), оксидов (куприт Cu 2 O, тенорит CuO) или гидрокарбонатов (малахит CuCO 3 × Cu(OH 2), азурит 2CuCO 3­ × Cu(OH) 2).

Пустая порода состоит из пирита FeS, кварца SiO 2 , карбонатов магния и кальция (MgCO 3 и CaCO 3), а также из различных силикатов, содержащих Al 2 O 3 , CaO, MgO и оксиды железа.

В рудах иногда содержится значительное количество других металлов: цинк, олово, никель, золото, серебро, кремний и другие.

Руда делится на сульфидные, окисленные и смешанные. Сульфидные руды бывают обычно первичного происхождения, а окисленные руды образовались в результате окисления металлов сульфидных руд.

В небольших количествах встречаются так называемые самородные руды, в которых медь находится в свободном виде.


ПИРОМЕТАЛЛУРГИЧЕСКИЙ СПОСОБ ПРОИЗВОДСТВА МЕДИ.


Известны два способа извлечения меди из руд и концентратов: гидрометаллургический и пирометаллургический.

Первый из них не нашел широкого применения. Его используют при переработке бедных окисленных и самородных руд. Этот способ в отличии от пирометаллургического не позволяет извлечь попутно с медью драгоценные металлы.

Второй способ пригоден для переработки всех руд и особенно эффективен в том случае, когда руды подвергаются обогащению.

Основу этого процесса составляет плавка, при которой расплавленная масса разделяется на два жидких слоя: штейн-сплав сульфидов и шлак-сплав окислов. В плавку поступают либо медная руда, либо обожженные концентраты медных руд. Обжиг концентратов осуществляется с целью снижения содержания серы до оптимальных значений.

Жидкий штейн продувают в конвертерах воздухом для окисления сернистого железа, перевода железа в шлак и выделения черновой меди.


Подготовка руд к плавке.


Большинство медных руд обогащают способом флотации. В результате получают медный концентрат, содержащий 8-35% Cu, 40-50% S, 30-35% Fe и пустую породу, главным образом составляющими которой являются SiO 2 , Al 2 O 3 и CaO.

Концентраты обычно обжигают в окислительной среде с тем, чтобы удалить около 50% серы и получить обожженный концентрат с содержанием серы, необходимым для получения при плавке достаточно богатого штейна.

Обжиг обеспечивает хорошее смешение всех компонентов шихты и нагрев ее до 550-600 0 С и, в конечном итоге, снижение расхода топлива в отражательной печи в два раза. Однако при переплавке обожженной шихты несколько возрастают потери меди в шлаке и унос пыли. Поэтому обычно богатые медные концентраты (25-35% Cu) плавят без обжига, а бедные (8-25% Cu) подвергают обжигу.

Температура обжига концентратов применяют многоподовые печи с механическим перегреванием. Такие печи работают непрерывно.

Выплавка медного штейна

Медный штейн, состоящий в основном из сульфидов меди и железа (Cu 2 S+FeS=80-90%) и других сульфидов, а также окислов железа, кремния, алюминия и кальция, выплавляют в печах различного типа.

Комплексные руды, содержащие золото, серебро, селен и теллур, целесообразно обогащать так, чтобы в концентрат была переведена не только медь, но и эти металлы. Концентрат переплавляют в штейн в отражательных или электрических печах.

Сернистые, чисто медные руды целесообразно перерабатывать в шахтных печах.

При высоком содержании серы в рудах целесообразно применять так называемый процесс медно-серной плавки в шахтной печи с улавливанием газов и извлечением из них элементарной серы.

В печь загружают медную руду, известняк, кокс и оборотные продукты. Загрузку ведут отдельными порциями сырых материалов и кокса.

В верхних горизонтах шахты создается восстановительная среда, а в нижней части печи – окислительная. Нижние слои шихты плавятся, и она постепенно опускается вниз навстречу потоку горячих газов. Температура у фурм достигается 1500 0 С на верху печи она равна примерно 450 0 С.

Столь высокая температура отходящих газов необходима для того, чтобы обеспечить возможность из очистки от пыли до начала конденсации паров серы.

В нижней части печи, главным образом у фурм, протекают следующие основные процессы:

а) Сжигание углерода кокса

Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.



Рассказать друзьям